2023-01-15 22:15:42 +01:00
{
"cells": [
{
"cell_type": "code",
2023-01-29 19:54:59 +01:00
"execution_count": 1,
2023-01-15 22:15:42 +01:00
"id": "603763b9",
"metadata": {},
"outputs": [],
"source": [
"from simpful import *\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"id": "5e8a33b1",
"metadata": {},
"source": [
"## Sterownik 1 - Decyzja o udziale w grze\n",
"##### Dane wejściowe:\n",
"- Wartość żetonów\n",
"- Liczba przegranych z rzędu\n",
"\n",
"##### Dane wyjściowe:\n",
"- Decyzja dot. udziału w grze"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "a3a08d50",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * Processing output for variable 'decision'\n",
" whose universe of discourse is: [0, 25]\n",
" contains the following fuzzy sets: [<Fuzzy set (function), term='leave'>, <Fuzzy set (function), term='play'>, <Fuzzy set (function), term='playDouble'>]\n",
" ** Rule composition: f.(c.(numLossInRow IS average) AND c.(chipValue IS average)) -> ('decision', 'play', '1.0') , output variable: 'decision' with term: 'play'\n",
" ** Rule composition: f.(c.(numLossInRow IS low) OR c.(chipValue IS low)) -> ('decision', 'leave', '1.0') , output variable: 'decision' with term: 'leave'\n",
" ** Rule composition: f.(c.(numLossInRow IS high) AND c.(chipValue IS high)) -> ('decision', 'playDouble', '1.0') , output variable: 'decision' with term: 'playDouble'\n",
" * Indices: {'play': 1, 'leave': 0, 'playDouble': 2}\n",
" * Weighted values: 6201.36\tValues: 458.14\tCoG: 13.54\n"
]
},
{
"data": {
"text/plain": [
"'play'"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"FS = FuzzySystem(show_banner=False)\n",
"\n",
"FS.add_linguistic_variable(\"chipValue\", AutoTriangle(3, terms=['low', 'average', 'high'], universe_of_discourse=[0, 10]))\n",
"FS.add_linguistic_variable(\"numLossInRow\", AutoTriangle(3, terms=['low', 'average', 'high'], universe_of_discourse=[0, 10]))\n",
"\n",
"O1 = TriangleFuzzySet(0,0,13, term=\"leave\")\n",
"O2 = TriangleFuzzySet(0,13,25, term=\"play\")\n",
"O3 = TriangleFuzzySet(13,25,25, term=\"playDouble\")\n",
"FS.add_linguistic_variable(\"decision\", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0, 25]))\n",
"\n",
"FS.add_rules([\n",
"\t\"IF (numLossInRow IS average) AND (chipValue IS average) THEN (decision IS play)\",\n",
"\t\"IF (numLossInRow IS low) OR (chipValue IS low) THEN (decision IS leave)\",\n",
" \"IF (numLossInRow IS high) AND (chipValue IS high) THEN (decision IS playDouble)\",\n",
"\t])\n",
"\n",
"FS.set_variable(\"chipValue\", 7) \n",
"FS.set_variable(\"numLossInRow\", 7) \n",
"\n",
"result = FS.inference(verbose=True)\n",
"decision_terms = [(i.get_term(), FS.get_fuzzy_set('decision', i.get_term()).get_value(result['decision'])) for i in FS.get_fuzzy_sets('decision')]\n",
"endDecision = max(decision_terms, key=lambda item:item[1])[0]\n",
"endDecision"
]
},
{
"cell_type": "code",
2023-01-29 19:54:59 +01:00
"execution_count": 1,
2023-01-15 22:15:42 +01:00
"id": "e2cbe240",
"metadata": {},
2023-01-29 19:54:59 +01:00
"outputs": [],
2023-01-15 22:15:42 +01:00
"source": [
2023-01-29 19:54:59 +01:00
"# FS.plot_variable('chipValue')\n",
"# FS.plot_variable('numLossInRow')\n",
"# FS.plot_variable('decision')"
2023-01-15 22:15:42 +01:00
]
},
{
"cell_type": "markdown",
"id": "7ef6a277",
"metadata": {},
"source": [
"## Sterownik 2 - Decyzja o strategii w przypadku pary\n",
"##### Dane wejściowe:\n",
"- Wartość widocznej karty krupiera\n",
"- Wartość karty gracza (jednej z pary)\n",
"\n",
"##### Dane wyjściowe:\n",
"- Decyzja dot. akcji w grze"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "2f13e6ad",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * Processing output for variable 'decision'\n",
" whose universe of discourse is: [0, 25]\n",
" contains the following fuzzy sets: [<Fuzzy set (function), term='continue'>, <Fuzzy set (function), term='split'>]\n",
" ** Rule composition: c.(playerCardValue IS high) -> ('decision', 'split', '1.0') , output variable: 'decision' with term: 'split'\n",
" ** Rule composition: f.(c.(playerCardValue IS average) AND c.(dealerCardValue IS average)) -> ('decision', 'split', '1.0') , output variable: 'decision' with term: 'split'\n",
" ** Rule composition: f.(c.(playerCardValue IS low) AND c.(dealerCardValue IS average)) -> ('decision', 'split', '1.0') , output variable: 'decision' with term: 'split'\n",
" ** Rule composition: f.(c.(playerCardValue IS low) AND c.(dealerCardValue IS low)) -> ('decision', 'continue', '1.0') , output variable: 'decision' with term: 'continue'\n",
" ** Rule composition: f.(c.(playerCardValue IS low) AND c.(dealerCardValue IS high)) -> ('decision', 'continue', '1.0') , output variable: 'decision' with term: 'continue'\n",
" * Indices: {'split': 1, 'continue': 0}\n",
" * Weighted values: 4597.07\tValues: 290.67\tCoG: 15.82\n"
]
},
{
"data": {
"text/plain": [
"'split'"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"FS = FuzzySystem(show_banner=False)\n",
"\n",
"T1 = TriangleFuzzySet(0,0,6, term=\"low\")\n",
"T2 = TriangleFuzzySet(4,6,8, term=\"average\")\n",
"T3 = TriangleFuzzySet(6,11,11, term=\"high\")\n",
"FS.add_linguistic_variable(\"dealerCardValue\", LinguisticVariable([T1, T2, T3], universe_of_discourse=[0, 11]))\n",
"FS.add_linguistic_variable(\"playerCardValue\", LinguisticVariable([T1, T2, T3], universe_of_discourse=[0, 11]))\n",
"\n",
"\n",
"O1 = TriangleFuzzySet(0,0,15, term=\"continue\")\n",
"O2 = TriangleFuzzySet(11,25,25, term=\"split\")\n",
"FS.add_linguistic_variable(\"decision\", LinguisticVariable([O1, O2], universe_of_discourse=[0, 25]))\n",
"\n",
"FS.add_rules([\n",
"\t\"IF (playerCardValue IS high) THEN (decision IS split)\",\n",
"\t\"IF (playerCardValue IS average) AND (dealerCardValue IS average) THEN (decision IS split)\",\n",
2023-01-29 19:54:59 +01:00
" \"IF (playerCardValue IS average) AND (dealerCardValue IS low) THEN (decision IS split)\",\n",
" \"IF (playerCardValue IS low) AND (dealerCardValue IS high) THEN (decision IS continue)\",\n",
2023-01-15 22:15:42 +01:00
" \"IF (playerCardValue IS low) AND (dealerCardValue IS average) THEN (decision IS split)\",\n",
" \"IF (playerCardValue IS low) AND (dealerCardValue IS low) THEN (decision IS continue)\",\n",
" \"IF (playerCardValue IS low) AND (dealerCardValue IS high) THEN (decision IS continue)\"\n",
"\t])\n",
"\n",
"FS.set_variable(\"dealerCardValue\", 5) \n",
"FS.set_variable(\"playerCardValue\", 3) \n",
"\n",
"result = FS.inference(verbose=True)\n",
"decision_terms = [(i.get_term(), FS.get_fuzzy_set('decision', i.get_term()).get_value(result['decision'])) for i in FS.get_fuzzy_sets('decision')]\n",
"endDecision = max(decision_terms, key=lambda item:item[1])[0]\n",
"endDecision"
]
},
{
"cell_type": "code",
2023-01-29 19:54:59 +01:00
"execution_count": 8,
2023-01-15 22:15:42 +01:00
"id": "ba24b10d",
"metadata": {},
2023-01-29 19:54:59 +01:00
"outputs": [],
2023-01-15 22:15:42 +01:00
"source": [
2023-01-29 19:54:59 +01:00
"# FS.plot_variable('dealerCardValue')\n",
"# FS.plot_variable('playerCardValue')\n",
"# FS.plot_variable('decision')"
2023-01-15 22:15:42 +01:00
]
},
{
"cell_type": "markdown",
"id": "4f58a14a",
"metadata": {},
"source": [
"## Sterownik 3 - Decyzja jaką akcję podjąć (gracz bez asa wśród dwóch kart)\n",
"##### Dane wejściowe:\n",
"- Wartość widocznej karty krupiera\n",
"- Suma kart gracza\n",
"- Suma zliczonych kart\n",
"\n",
"##### Dane wyjściowe:\n",
"- Decyzja dot. akcji w grze"
]
},
{
"cell_type": "code",
2023-01-29 19:54:59 +01:00
"execution_count": 6,
2023-01-15 22:15:42 +01:00
"id": "d78bc74a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * Processing output for variable 'decision'\n",
" whose universe of discourse is: [0, 25]\n",
" contains the following fuzzy sets: [<Fuzzy set (function), term='doubleDown'>, <Fuzzy set (function), term='hit'>, <Fuzzy set (function), term='stand'>]\n",
2023-01-29 19:54:59 +01:00
" ** Rule composition: c.(playerCardsValue IS high) -> ('decision', 'stand', '1.0') , output variable: 'decision' with term: 'stand'\n",
" ** Rule composition: c.(playerCardsValue IS low) -> ('decision', 'hit', '1.0') , output variable: 'decision' with term: 'hit'\n",
" ** Rule composition: f.(c.(playerCardsValue IS average) AND c.(dealerCardValue IS low)) -> ('decision', 'stand', '1.0') , output variable: 'decision' with term: 'stand'\n",
" ** Rule composition: f.(c.(playerCardsValue IS average) AND c.(dealerCardValue IS high)) -> ('decision', 'hit', '1.0') , output variable: 'decision' with term: 'hit'\n",
" ** Rule composition: f.(c.(playerCardsValue IS average) AND f.(c.(dealerCardValue IS average) AND c.(countedCardsValue IS low))) -> ('decision', 'hit', '1.0') , output variable: 'decision' with term: 'hit'\n",
" * Indices: {'stand': 2, 'hit': 1}\n",
" * Weighted values: 1913.98\tValues: 152.62\tCoG: 12.54\n",
"{'decision': 12.540414715943523}\n"
2023-01-15 22:15:42 +01:00
]
},
{
"data": {
"text/plain": [
2023-01-29 19:54:59 +01:00
"'hit'"
2023-01-15 22:15:42 +01:00
]
},
2023-01-29 19:54:59 +01:00
"execution_count": 6,
2023-01-15 22:15:42 +01:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
2023-01-29 19:54:59 +01:00
"# dodatkowy argument określający liczbę kart gracza - w przypadku rozpoczęcia rozgrywki możliwa jest decyzja o podwojeniu\n",
"playerCardsNum = 3\n",
"\n",
2023-01-15 22:15:42 +01:00
"FS = FuzzySystem(show_banner=False)\n",
"\n",
"FS.add_linguistic_variable(\"dealerCardValue\", LinguisticVariable([\n",
" TriangleFuzzySet(0,0,6, term=\"low\"),\n",
" TriangleFuzzySet(4,6,8, term=\"average\"),\n",
" TriangleFuzzySet(6,11,11, term=\"high\")], \n",
" universe_of_discourse=[0, 11]))\n",
"\n",
"FS.add_linguistic_variable(\"playerCardsValue\", LinguisticVariable([\n",
" TriangleFuzzySet(0,0,12, term=\"low\"),\n",
" TriangleFuzzySet(11,14,17, term=\"average\"),\n",
" TriangleFuzzySet(12,21,21, term=\"high\")], \n",
" universe_of_discourse=[0, 21]))\n",
"\n",
"FS.add_linguistic_variable(\"countedCardsValue\", LinguisticVariable([\n",
" TriangleFuzzySet(-20,-20,0, term=\"low\"),\n",
" TriangleFuzzySet(-5,0,5, term=\"average\"),\n",
" TriangleFuzzySet(0,20,20, term=\"high\")], \n",
" universe_of_discourse=[-20, 20]))\n",
"\n",
"\n",
"O1 = TriangleFuzzySet(0,0,13, term=\"doubleDown\")\n",
"O2 = TriangleFuzzySet(0,13,25, term=\"hit\")\n",
"O3 = TriangleFuzzySet(13,25,25, term=\"stand\")\n",
"FS.add_linguistic_variable(\"decision\", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0, 25]))\n",
"\n",
"\n",
2023-01-29 19:54:59 +01:00
"if playerCardsNum == 2:\n",
" FS.add_rules([\n",
" \"IF (playerCardsValue IS low) THEN (decision IS doubleDown)\",\n",
" \"IF (playerCardsValue IS average) AND (dealerCardValue IS high) THEN (decision IS doubleDown)\",\n",
" \"IF (playerCardsValue IS high) THEN (decision IS stand)\",\n",
" \"IF (playerCardsValue IS average) AND (dealerCardValue IS average) THEN (decision IS stand)\",\n",
" \"IF (playerCardsValue IS average) AND (dealerCardValue IS average) THEN (decision IS doubleDown)\"\n",
" ])\n",
" \n",
"else: \n",
" FS.add_rules([\n",
" \"IF (playerCardsValue IS high) THEN (decision IS stand)\",\n",
" \"IF (playerCardsValue IS low) THEN (decision IS hit)\",\n",
" \"IF (playerCardsValue IS average) AND (dealerCardValue IS low) THEN (decision IS stand)\",\n",
" \"IF (playerCardsValue IS average) AND (dealerCardValue IS high) THEN (decision IS hit)\",\n",
" \"IF (playerCardsValue IS average) AND (dealerCardValue IS average) AND (countedCardsValue IS low) THEN (decision IS hit)\",\n",
" ])\n",
" \n",
" \n",
2023-01-15 22:15:42 +01:00
"FS.set_variable(\"dealerCardValue\", 4) \n",
"FS.set_variable(\"playerCardsValue\", 10)\n",
"FS.set_variable(\"countedCardsValue\", 0)\n",
"\n",
"result = FS.inference(verbose=True)\n",
"print(result)\n",
"decision_terms = [(i.get_term(), FS.get_fuzzy_set('decision', i.get_term()).get_value(result['decision'])) for i in FS.get_fuzzy_sets('decision')]\n",
"endDecision = max(decision_terms, key=lambda item:item[1])[0]\n",
"endDecision"
]
},
{
"cell_type": "code",
2023-01-29 19:54:59 +01:00
"execution_count": 7,
2023-01-15 22:15:42 +01:00
"id": "c9ea8787",
"metadata": {},
2023-01-29 19:54:59 +01:00
"outputs": [],
2023-01-15 22:15:42 +01:00
"source": [
2023-01-29 19:54:59 +01:00
"# FS.plot_variable('dealerCardValue')\n",
"# FS.plot_variable('playerCardsValue')\n",
"# FS.plot_variable('countedCardsValue')\n",
"# FS.plot_variable('decision')"
2023-01-15 22:15:42 +01:00
]
},
{
"cell_type": "markdown",
"id": "32fbd42b",
"metadata": {},
"source": [
2023-01-29 19:54:59 +01:00
"## Sterownik 4 - Decyzja jaką akcję podjąć (gracz z asem wśród dwóch kart)\n",
2023-01-15 22:15:42 +01:00
"##### Dane wejściowe:\n",
"- Wartość widocznej karty krupiera\n",
"- Wartość drugiej karty gracza\n",
"- Suma zliczonych kart\n",
"\n",
"##### Dane wyjściowe:\n",
"- Decyzja dot. akcji w grze"
]
},
{
"cell_type": "code",
2023-01-29 19:54:59 +01:00
"execution_count": 15,
2023-01-15 22:15:42 +01:00
"id": "878e6c15",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * Processing output for variable 'decision'\n",
" whose universe of discourse is: [0, 25]\n",
" contains the following fuzzy sets: [<Fuzzy set (function), term='doubleDown'>, <Fuzzy set (function), term='hit'>, <Fuzzy set (function), term='stand'>]\n",
" ** Rule composition: c.(playerCardValue IS high) -> ('decision', 'Stand', '1.0') , output variable: 'decision' with term: 'Stand'\n",
2023-01-29 19:54:59 +01:00
" ** Rule composition: c.(playerCardValue IS low) -> ('decision', 'hit', '1.0') , output variable: 'decision' with term: 'hit'\n",
" ** Rule composition: f.(c.(playerCardValue IS average) AND c.(dealerCardValue IS high)) -> ('decision', 'Hit', '1.0') , output variable: 'decision' with term: 'Hit'\n",
" ** Rule composition: f.(c.(playerCardValue IS average) AND f.(c.(dealerCardValue IS average) AND c.(countedCardsValue IS high))) -> ('decision', 'Stand', '1.0') , output variable: 'decision' with term: 'Stand'\n",
" ** Rule composition: f.(c.(playerCardValue IS average) AND f.(c.(dealerCardValue IS average) AND c.(countedCardsValue IS low))) -> ('decision', 'Hit', '1.0') , output variable: 'decision' with term: 'Hit'\n",
" * Indices: {'Stand': -1, 'hit': 1, 'Hit': -1}\n",
2023-01-15 22:15:42 +01:00
" * Weighted values: 3662.59\tValues: 180.07\tCoG: 20.34\n",
"{'decision': 20.339814678947857}\n"
]
},
{
"data": {
"text/plain": [
"'stand'"
]
},
2023-01-29 19:54:59 +01:00
"execution_count": 15,
2023-01-15 22:15:42 +01:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
2023-01-29 19:54:59 +01:00
"# dodatkowy argument określający liczbę kart gracza - w przypadku rozpoczęcia rozgrywki możliwa jest decyzja o podwojeniu\n",
"playerCardsNum = 3\n",
"\n",
2023-01-15 22:15:42 +01:00
"FS = FuzzySystem(show_banner=False)\n",
"\n",
"FS.add_linguistic_variable(\"dealerCardValue\", LinguisticVariable([\n",
" TriangleFuzzySet(0,0,6, term=\"low\"),\n",
" TriangleFuzzySet(4,6,8, term=\"average\"),\n",
" TriangleFuzzySet(6,11,11, term=\"high\")], \n",
" universe_of_discourse=[0, 11]))\n",
"\n",
"FS.add_linguistic_variable(\"playerCardValue\", LinguisticVariable([\n",
" TriangleFuzzySet(0,0,5, term=\"low\"),\n",
" TriangleFuzzySet(4,6,8, term=\"average\"),\n",
" TriangleFuzzySet(7,9,9, term=\"high\")], \n",
" universe_of_discourse=[0, 9]))\n",
"\n",
"FS.add_linguistic_variable(\"countedCardsValue\", LinguisticVariable([\n",
" TriangleFuzzySet(-20,-20,0, term=\"low\"),\n",
" TriangleFuzzySet(-5,0,5, term=\"average\"),\n",
" TriangleFuzzySet(0,20,20, term=\"high\")], \n",
" universe_of_discourse=[-20, 20]))\n",
"\n",
"\n",
"O1 = TriangleFuzzySet(0,0,13, term=\"doubleDown\")\n",
"O2 = TriangleFuzzySet(0,13,25, term=\"hit\")\n",
"O3 = TriangleFuzzySet(13,25,25, term=\"stand\")\n",
"FS.add_linguistic_variable(\"decision\", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0, 25]))\n",
"\n",
2023-01-29 19:54:59 +01:00
"if playerCardsNum == 2:\n",
" FS.add_rules([\n",
" \"IF (playerCardValue IS average) AND (dealerCardValue IS average) THEN (decision IS doubleDown)\",\n",
" \"IF (playerCardValue IS high) THEN (decision IS Stand)\",\n",
" \"IF (playerCardValue IS average) AND (dealerCardValue IS high) THEN (decision IS hit)\",\n",
" \"IF (playerCardValue IS low) AND (dealerCardValue IS low) THEN (decision IS hit)\",\n",
" ])\n",
"else:\n",
" FS.add_rules([\n",
" \"IF (playerCardValue IS high) THEN (decision IS Stand)\",\n",
" \"IF (playerCardValue IS low) THEN (decision IS hit)\",\n",
" \"IF (playerCardValue IS average) AND (dealerCardValue IS high) THEN (decision IS Hit)\",\n",
" \"IF (playerCardValue IS average) AND (dealerCardValue IS average) AND (countedCardsValue IS high) THEN (decision IS Stand)\",\n",
" \"IF (playerCardValue IS average) AND (dealerCardValue IS average) AND (countedCardsValue IS low) THEN (decision IS Hit)\"\n",
" ])\n",
2023-01-15 22:15:42 +01:00
"\n",
"FS.set_variable(\"dealerCardValue\", 2) \n",
"FS.set_variable(\"playerCardValue\", 8)\n",
"FS.set_variable(\"countedCardsValue\", 0)\n",
"\n",
"result = FS.inference(verbose=True)\n",
"print(result)\n",
"decision_terms = [(i.get_term(), FS.get_fuzzy_set('decision', i.get_term()).get_value(result['decision'])) for i in FS.get_fuzzy_sets('decision')]\n",
"endDecision = max(decision_terms, key=lambda item:item[1])[0]\n",
"endDecision"
]
},
{
"cell_type": "code",
2023-01-29 19:54:59 +01:00
"execution_count": 2,
2023-01-15 22:15:42 +01:00
"id": "82f441d3",
"metadata": {},
2023-01-29 19:54:59 +01:00
"outputs": [],
2023-01-15 22:15:42 +01:00
"source": [
2023-01-29 19:54:59 +01:00
"# FS.plot_variable('dealerCardValue')\n",
"# FS.plot_variable('playerCardValue')\n",
"# FS.plot_variable('countedCardsValue')\n",
"# FS.plot_variable('decision')"
2023-01-15 22:15:42 +01:00
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}