2020-04-28 21:08:11 +02:00
|
|
|
import pygame
|
|
|
|
import sys
|
|
|
|
import random
|
|
|
|
from Tractor import Tractor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Game(object):
|
|
|
|
def __init__(self):
|
|
|
|
# Config
|
|
|
|
self.max_tps = 2.0
|
|
|
|
self.res = (720, 720)
|
|
|
|
|
|
|
|
self.fields = []
|
|
|
|
self.randomize_field()
|
|
|
|
|
|
|
|
# Initialization
|
|
|
|
pygame.init()
|
|
|
|
self.screen = pygame.display.set_mode(self.res)
|
|
|
|
pygame.display.set_caption('Traktorek')
|
|
|
|
self.clock = pygame.time.Clock()
|
|
|
|
self.dt = 0.0
|
|
|
|
|
|
|
|
self.player = Tractor(self)
|
|
|
|
|
|
|
|
while True:
|
|
|
|
# Handle events
|
|
|
|
for event in pygame.event.get():
|
|
|
|
if event.type == pygame.QUIT:
|
|
|
|
sys.exit(0)
|
|
|
|
elif event.type == pygame.K_ESCAPE:
|
|
|
|
sys.exit(0)
|
|
|
|
|
|
|
|
# Ticking
|
|
|
|
self.dt += self.clock.tick() / 1000.0
|
|
|
|
while self.dt > 1 / self.max_tps:
|
|
|
|
self.tick()
|
|
|
|
self.dt -= 1 / self.max_tps
|
|
|
|
|
|
|
|
# Rendering
|
|
|
|
self.screen.fill((0, 0, 0))
|
|
|
|
self.draw()
|
|
|
|
pygame.display.flip()
|
|
|
|
|
|
|
|
def tick(self):
|
|
|
|
self.player.tick()
|
|
|
|
|
|
|
|
def draw(self):
|
|
|
|
self.screen.fill((0, 0, 0))
|
|
|
|
self.draw_field()
|
|
|
|
self.draw_net()
|
|
|
|
self.player.draw()
|
|
|
|
pygame.display.update()
|
|
|
|
|
|
|
|
def draw_net(self):
|
|
|
|
color = (255, 255, 255)
|
|
|
|
for i in range(1, 5):
|
|
|
|
krat = int(720 / 5 * i)
|
|
|
|
# linia pozioma
|
|
|
|
pygame.draw.line(self.screen, color, (0, krat), (720, krat), 1)
|
|
|
|
# linia pionowa
|
|
|
|
pygame.draw.line(self.screen, color, (krat, 0), (krat, 720), 1)
|
|
|
|
|
|
|
|
def randomize_field(self):
|
2020-05-20 11:42:28 +02:00
|
|
|
ileDni = []
|
|
|
|
uprawa = []
|
|
|
|
uprawaDni = []
|
|
|
|
woda = []
|
2020-04-28 21:08:11 +02:00
|
|
|
for x in range(25):
|
|
|
|
temp = []
|
|
|
|
# nasiona
|
|
|
|
temp.append(random.choice(["żyto", "jęczmień", "owies", "marchew", "rzodkiew", "pietruszka", "puste"]))
|
|
|
|
# gleba
|
|
|
|
temp.append(random.choice([True, False]))
|
|
|
|
# woda
|
|
|
|
temp.append(random.choice([True, False]))
|
2020-05-20 11:42:28 +02:00
|
|
|
# ile dni temu pole bylo podlewane
|
|
|
|
temp.append(random.randrange(7))
|
2020-04-28 21:08:11 +02:00
|
|
|
# # growth rate
|
|
|
|
# temp.append(random)
|
|
|
|
# # cost
|
|
|
|
if temp[0] == "żyto":
|
|
|
|
temp.append(10)
|
2020-05-20 11:42:28 +02:00
|
|
|
temp.append(4)
|
2020-04-28 21:08:11 +02:00
|
|
|
elif temp[0] == "jęczmień":
|
|
|
|
temp.append(12)
|
2020-05-20 11:42:28 +02:00
|
|
|
temp.append(3)
|
2020-04-28 21:08:11 +02:00
|
|
|
elif temp[0] == "owies":
|
|
|
|
temp.append(8)
|
2020-05-20 11:42:28 +02:00
|
|
|
temp.append(2)
|
2020-04-28 21:08:11 +02:00
|
|
|
elif temp[0] == "marchew":
|
|
|
|
temp.append(14)
|
2020-05-20 11:42:28 +02:00
|
|
|
temp.append(5)
|
2020-04-28 21:08:11 +02:00
|
|
|
elif temp[0] == "rzodkiew":
|
|
|
|
temp.append(7)
|
2020-05-20 11:42:28 +02:00
|
|
|
temp.append(5)
|
2020-04-28 21:08:11 +02:00
|
|
|
elif temp[0] == "pietruszka":
|
|
|
|
temp.append(6)
|
2020-05-20 11:42:28 +02:00
|
|
|
temp.append(1)
|
2020-04-28 21:08:11 +02:00
|
|
|
elif temp[0] == "puste":
|
|
|
|
temp.append(2)
|
2020-05-20 11:42:28 +02:00
|
|
|
temp.append(6)
|
2020-04-28 21:08:11 +02:00
|
|
|
else:
|
|
|
|
temp.append(0)
|
|
|
|
|
|
|
|
self.fields.append(temp)
|
2020-05-20 11:42:28 +02:00
|
|
|
uprawa.append(temp[0])
|
|
|
|
ileDni.append(temp[3])
|
|
|
|
uprawaDni.append(temp[6])
|
|
|
|
woda.append(temp[2])
|
|
|
|
print(self.fields)
|
|
|
|
print(uprawa)
|
|
|
|
print(ileDni)
|
|
|
|
print(uprawaDni)
|
|
|
|
nawadnianie = pd.DataFrame({"uprawa": uprawa, "ileDni": ileDni, "uprawaDni": uprawaDni, "woda": woda})
|
|
|
|
nawadnianie["uprawa"], uprawa_kody=pd.factorize(nawadnianie["uprawa"])
|
|
|
|
nawadnianie["ileDni"], ileDni_kody = pd.factorize(nawadnianie["ileDni"])
|
|
|
|
nawadnianie["uprawaDni"], uprawaDni_kody = pd.factorize(nawadnianie["uprawaDni"])
|
|
|
|
nawadnianie["woda"], woda_kody = pd.factorize(nawadnianie["woda"])
|
|
|
|
X = nawadnianie.drop(["woda"], axis=1)
|
|
|
|
y = nawadnianie["woda"]
|
|
|
|
klasyfikator = DecisionTreeClassifier(criterion="entropy")
|
|
|
|
klasyfikator.fit(X=X, y=y)
|
|
|
|
print(klasyfikator.predict(X))
|
|
|
|
#if(klasyfikator.predict(X)[n]==0):
|
2020-04-28 21:08:11 +02:00
|
|
|
|
|
|
|
def draw_field(self):
|
|
|
|
for x in range(25):
|
|
|
|
self.screen.fill(self.color(x), (144 * (x % 5), 144 * (x // 5), 144 * (x % 5 + 1), 144 * (x // 5 + 1)))
|
|
|
|
|
|
|
|
def color(self, z):
|
|
|
|
if self.fields[z][0] == 'owies':
|
|
|
|
return (255, 200, 55)
|
|
|
|
elif self.fields[z][0] == 'jęczmień':
|
|
|
|
return (170, 150, 40)
|
|
|
|
elif self.fields[z][0] == 'żyto':
|
|
|
|
return (100, 215, 80)
|
|
|
|
elif self.fields[z][0] == 'marchew':
|
|
|
|
return (224, 60, 14)
|
|
|
|
elif self.fields[z][0] == 'rzodkiew':
|
|
|
|
return (142, 24, 104)
|
|
|
|
elif self.fields[z][0] == 'pietruszka':
|
|
|
|
return (254, 247, 246)
|
|
|
|
else:
|
|
|
|
return (0,0,0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
Game()
|