From 2c5e23797e45f10337a0d3b27166fa1449dbd0d4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Natalia=20Wi=C5=9Bniewska?= Date: Wed, 3 Jun 2020 10:38:28 +0000 Subject: [PATCH] =?UTF-8?q?Prze=C5=9Blij=20pliki=20do=20'Traktorek'?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../Natalia Wiśniewska- drzewo_decyzyjne.py | 144 ++++++++++++++++++ 1 file changed, 144 insertions(+) create mode 100644 Traktorek/Natalia Wiśniewska- drzewo_decyzyjne.py diff --git a/Traktorek/Natalia Wiśniewska- drzewo_decyzyjne.py b/Traktorek/Natalia Wiśniewska- drzewo_decyzyjne.py new file mode 100644 index 0000000..b1d8fb2 --- /dev/null +++ b/Traktorek/Natalia Wiśniewska- drzewo_decyzyjne.py @@ -0,0 +1,144 @@ +training_data = [ + #nawodnienie, kiedyNawadniano, coIleDniTrzebaNawadniac, czyMaPadac, kiedyPadalo + ['n', 2, 3, 't', 1], + ['s', 1, 3, 't', 1], + ['s', 5, 2, 'n', 1], + ['n', 3, 5, 'n', 1], + ['s', 3, 1, 't', 2], + ['n', 2, 4, 'n', 2], + ['n', 4, 6, 't', 3], + ['n', 6, 5, 't', 3], + ['s', 1, 2, 't', 4], + ['s', 7, 3, 'n', 5], + ['n', 4, 4, 'n', 5], + ['s', 5, 6, 't', 5], + ['n', 2, 7, 't', 1], + ['s', 5, 6, 't', 7], + ['s', 5, 3, 'n', 7], + ['n', 3, 2, 'n', 7], + ['s', 3, 5, 't', 4], + ['n', 3, 4, 'n', 4], + ['n', 4, 3, 't', 6], + ['n', 6, 3, 't', 6], + ['s', 1, 4, 't', 6], + ['s', 7, 5, 'n', 3], + ['n', 2, 5, 'n', 3], + ['s', 4, 6, 't', 3], + ['s', 4, 8, 'n', 4] +] + +header = ["nawodnienie", "kiedyNawadniano", "coIleDni", "czyMaPadac", "kiedyPadalo"] + +def class_counts(rows): + counts = {} + for row in rows: + label = row[-1] + if label not in counts: + counts[label] = 0 + counts[label] += 1 + return counts + + +def is_numeric(value): + return isinstance(value, int) or isinstance(value, float) + + +class Question: + def __init__(self, column, value): + self.column = column + self.value = value + + def match(self, example): + val = example[self.column] + if is_numeric(val): + return val >= self.value + else: + return val == self.value + + def __repr__(self): + condition = "==" + if is_numeric(self.value): + condition = ">=" + return "Czy %s %s %s?" % ( + header[self.column], condition, str(self.value)) + +def partition(rows, question): + true_rows, false_rows = [], [] + for row in rows: + if question.match(row): + true_rows.append(row) + else: + false_rows.append(row) + return true_rows, false_rows + + +def gini(rows): + counts = class_counts(rows) + impurity = 1 + for lbl in counts: + prob_of_lbl = counts[lbl] / float(len(rows)) + impurity -= prob_of_lbl**2 + return impurity + + +def info_gain(left, right, current_uncertainty): + p = float(len(left)) / (len(left) + len(right)) + return current_uncertainty - p * gini(left) - (1 - p) * gini(right) + + +def find_best_split(rows): + best_gain = 0 + best_question = None + current_uncertainty = gini(rows) + n_features = len(rows[0]) - 1 + for col in range(n_features): + values = set([row[col] for row in rows]) + for val in values: + question = Question(col, val) + true_rows, false_rows = partition(rows, question) + if len(true_rows) == 0 or len(false_rows) == 0: + continue + gain = info_gain(true_rows, false_rows, current_uncertainty) + if gain >= best_gain: + best_gain, best_question = gain, question + return best_gain, best_question + + +class Leaf: + def __init__(self, rows): + self.predictions = class_counts(rows) + +class Decision_Node: + def __init__(self, + question, + true_branch, + false_branch): + self.question = question + self.true_branch = true_branch + self.false_branch = false_branch + +def build_tree(rows): + gain, question = find_best_split(rows) + if gain == 0: + return Leaf(rows) + true_rows, false_rows = partition(rows, question) + true_branch = build_tree(true_rows) + false_branch = build_tree(false_rows) + return Decision_Node(question, true_branch, false_branch) + + +def print_tree(node, spacing=""): + if isinstance(node, Leaf): + print (spacing + "Predict", node.predictions) + return + print (spacing + str(node.question)) + print (spacing + '--> True:') + print_tree(node.true_branch, spacing + " ") + print (spacing + '--> False:') + print_tree(node.false_branch, spacing + " ") + + +my_tree = build_tree(training_data) + +print_tree(my_tree) +