diff --git a/net_training.py b/net_training.py new file mode 100644 index 0000000..7f9d616 --- /dev/null +++ b/net_training.py @@ -0,0 +1,32 @@ +import os +import random + +import matplotlib.pyplot as plt +import numpy as np +from tensorflow.keras.applications import MobileNetV2 +from tensorflow.keras.applications.mobilenet import preprocess_input, decode_predictions +from tensorflow.keras.layers import Dense +from tensorflow.keras.models import Model +from tensorflow.keras.preprocessing.image import ImageDataGenerator + +podstawa_modelu = MobileNetV2(weights="imagenet", include_top=False, pooling='avg') +x = podstawa_modelu.output +preds = Dense(7, activation='softmax')(x) + +model = Model(inputs=podstawa_modelu.input, outputs=preds) + +for layer in model.layers[:50]: + layer.trainable = False +for layer in model.layers[50:]: + layer.trainable = True + +train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) + +train_generator = train_datagen.flow_from_directory('./dataset', target_size=(224, 224), color_mode='rgb', + batch_size=32, class_mode='categorical', shuffle=True) + +model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy']) +step_size_train = train_generator.n // train_generator.batch_size +model.fit_generator(generator=train_generator, steps_per_epoch=step_size_train, epochs=30) + +model.save('neural_model.h5')