final ver
This commit is contained in:
commit
69663af74a
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
*/.DS_Store
|
6530
all_models.ipynb
Normal file
6530
all_models.ipynb
Normal file
File diff suppressed because one or more lines are too long
2000
data/s2s-test.json
Normal file
2000
data/s2s-test.json
Normal file
File diff suppressed because it is too large
Load Diff
16000
data/s2s-train.json
Normal file
16000
data/s2s-train.json
Normal file
File diff suppressed because it is too large
Load Diff
2000
data/s2s-valid.json
Normal file
2000
data/s2s-valid.json
Normal file
File diff suppressed because it is too large
Load Diff
2000
data/test.json
Normal file
2000
data/test.json
Normal file
File diff suppressed because it is too large
Load Diff
16000
data/train.json
Normal file
16000
data/train.json
Normal file
File diff suppressed because it is too large
Load Diff
2000
data/valid.json
Normal file
2000
data/valid.json
Normal file
File diff suppressed because it is too large
Load Diff
79
data_prep.py
Normal file
79
data_prep.py
Normal file
@ -0,0 +1,79 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import json
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Dict
|
||||
|
||||
from datasets import load_dataset
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MAP_LABEL_TRANSLATION = {
|
||||
0: 'sadness',
|
||||
1: 'joy',
|
||||
2: 'love',
|
||||
3: 'anger',
|
||||
4: 'fear',
|
||||
5: 'surprise',
|
||||
}
|
||||
|
||||
def save_as_translations(original_save_path: Path, data_to_save: List[Dict]) -> None:
|
||||
file_name = 's2s-' + original_save_path.name
|
||||
file_path = original_save_path.parent / file_name
|
||||
|
||||
print(f'Saving into: {file_path}')
|
||||
with open(file_path, 'wt') as f_write:
|
||||
for data_line in data_to_save:
|
||||
label = data_line['label']
|
||||
new_label = MAP_LABEL_TRANSLATION[label]
|
||||
data_line['label'] = new_label
|
||||
data_line_str = json.dumps(data_line)
|
||||
f_write.write(f'{data_line_str}\n')
|
||||
|
||||
def main() -> None:
|
||||
loaded_data = load_dataset('emotion')
|
||||
logger.info(f'Loaded dataset emotion: {loaded_data}')
|
||||
|
||||
save_path = Path('data')
|
||||
save_train_path = save_path / 'train.json'
|
||||
save_valid_path = save_path / 'valid.json'
|
||||
save_test_path = save_path / 'test.json'
|
||||
if not save_path.exists():
|
||||
save_path.mkdir()
|
||||
|
||||
data_train, data_valid, data_test = [], [], []
|
||||
for source_data, dataset, max_size in [
|
||||
(loaded_data['train'], data_train, None),
|
||||
(loaded_data['test'], data_test, None),
|
||||
(loaded_data['validation'], data_valid, None)
|
||||
]:
|
||||
for i, data in enumerate(source_data):
|
||||
if max_size is not None and i >= max_size:
|
||||
break
|
||||
data_line = {
|
||||
'label': int(data['label']),
|
||||
'text': data['text'],
|
||||
}
|
||||
dataset.append(data_line)
|
||||
logger.info(f'Train: {len(data_train):6d}')
|
||||
logger.info(f'Test: {len(data_test):6d}')
|
||||
logger.info(f'Validation: {len(data_valid):6d}')
|
||||
|
||||
for file_path, data_to_save in [
|
||||
(save_train_path, data_train),
|
||||
(save_valid_path, data_valid),
|
||||
(save_test_path, data_test)
|
||||
]:
|
||||
print(f'Saving into: {file_path}')
|
||||
with open(file_path, 'wt') as f_write:
|
||||
for data_line in data_to_save:
|
||||
data_line_str = json.dumps(data_line)
|
||||
f_write.write(f'{data_line_str}\n')
|
||||
|
||||
save_as_translations(file_path, data_to_save)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
205
scripts/gpt2.py
Normal file
205
scripts/gpt2.py
Normal file
@ -0,0 +1,205 @@
|
||||
import logging
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
|
||||
from transformers import GPT2Model, GPT2ForSequenceClassification
|
||||
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Simple version #
|
||||
|
||||
class GPT2ClassificationHeadCustomSimple(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.n_embd
|
||||
self.dense_1 = nn.Linear(hidden_size, 4 * hidden_size)
|
||||
self.dense_2 = nn.Linear(4 * hidden_size, 2* hidden_size)
|
||||
self.dense_3 = nn.Linear(2 * hidden_size, hidden_size)
|
||||
self.dropout = nn.Dropout(config.resid_pdrop)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense_1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.dense_3(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class GPT2ForSequenceClassificationCustomSimple(GPT2ForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.transformer = GPT2Model(config)
|
||||
self.score = GPT2ClassificationHeadCustomSimple(config)
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
|
||||
# Version with custom forward 1 #
|
||||
|
||||
class GPT2ClassificationHeadCustom(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.n_embd
|
||||
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(4 * hidden_size, hidden_size)
|
||||
self.dropout = nn.Dropout(config.resid_pdrop)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
|
||||
# Get hidden states from second from the end
|
||||
hidden = kwargs['hidden_states'][-2]
|
||||
else:
|
||||
hidden = torch.zeros(x.size(), dtype=x.dtype, device=x.device)
|
||||
|
||||
x = self.dense_1_input(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
hidden = self.dense_1_hidden(hidden)
|
||||
hidden = torch.relu(hidden)
|
||||
hidden = self.dropout(hidden)
|
||||
|
||||
x = torch.cat((x, hidden), dim=2)
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class GPT2ForSequenceClassificationCustom(GPT2ForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.transformer = GPT2Model(config)
|
||||
self.score = GPT2ClassificationHeadCustom(config)
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
logits = self.score(hidden_states, hidden_states=transformer_outputs.hidden_states)
|
||||
|
||||
if input_ids is not None:
|
||||
batch_size, sequence_length = input_ids.shape[:2]
|
||||
else:
|
||||
batch_size, sequence_length = inputs_embeds.shape[:2]
|
||||
|
||||
assert (
|
||||
self.config.pad_token_id is not None or batch_size == 1
|
||||
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
||||
if self.config.pad_token_id is None:
|
||||
sequence_lengths = -1
|
||||
else:
|
||||
if input_ids is not None:
|
||||
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
||||
else:
|
||||
sequence_lengths = -1
|
||||
logger.warning(
|
||||
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||||
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
||||
)
|
||||
|
||||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
if not return_dict:
|
||||
output = (pooled_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutputWithPast(
|
||||
loss=loss,
|
||||
logits=pooled_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
334
scripts/roberta.py
Normal file
334
scripts/roberta.py
Normal file
@ -0,0 +1,334 @@
|
||||
from typing import Optional, Union, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
|
||||
from transformers import RobertaForSequenceClassification, RobertaModel
|
||||
from transformers.modeling_outputs import SequenceClassifierOutput
|
||||
|
||||
|
||||
# Simple version #
|
||||
|
||||
class RobertaClassificationHeadCustomSimple(nn.Module):
|
||||
"""Head for sentence-level classification tasks."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
|
||||
classifier_dropout = (
|
||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||
)
|
||||
self.dropout = nn.Dropout(classifier_dropout)
|
||||
self.relu = nn.LeakyReLU()
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||
|
||||
def forward(self, features, **kwargs):
|
||||
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
||||
|
||||
x = self.dense_1(x)
|
||||
x = self.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
hidden = self.dense_1_hidden(hidden)
|
||||
hidden = torch.relu(hidden)
|
||||
hidden = self.dropout(hidden)
|
||||
|
||||
x = torch.cat((x, hidden), dim=2)
|
||||
|
||||
x = self.dense_2(x)
|
||||
x = self.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class RobertaForSequenceClassificationCustomSimple(RobertaForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.config = config
|
||||
|
||||
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||
self.classifier = RobertaClassificationHeadCustomSimple(config)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.init_weights()
|
||||
|
||||
|
||||
# Version with custom forward 1 #
|
||||
|
||||
class RobertaClassificationHeadCustom(nn.Module):
|
||||
"""Head for sentence-level classification tasks."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.use_hidden_states = config.use_hidden_states
|
||||
hidden_size = config.hidden_size
|
||||
if self.use_hidden_states:
|
||||
hidden_size *= 2
|
||||
|
||||
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
|
||||
classifier_dropout = (
|
||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||
)
|
||||
self.dropout = nn.Dropout(classifier_dropout)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||
|
||||
def forward(self, features, **kwargs):
|
||||
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
|
||||
if self.use_hidden_states:
|
||||
x = torch.cat(
|
||||
(
|
||||
features[:, 0, :],
|
||||
# take <s> token (equiv. to [CLS]) from hidden states from second from the end
|
||||
kwargs['hidden_states'][-2][:, 0, :]
|
||||
),
|
||||
dim=1
|
||||
)
|
||||
else:
|
||||
x = features[:, 0, :] + kwargs['hidden_states'][-2][:, 0, :]
|
||||
del kwargs['hidden_states']
|
||||
else:
|
||||
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
||||
if self.use_hidden_states:
|
||||
x = torch.cat(
|
||||
(
|
||||
features[:, 0, :],
|
||||
torch.zeros(x.size(), dtype=x.dtype, device=x.device)
|
||||
),
|
||||
dim=1
|
||||
)
|
||||
|
||||
x = self.dense_1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class RobertaForSequenceClassificationCustom(RobertaForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.config = config
|
||||
|
||||
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||
self.classifier = RobertaClassificationHeadCustom(config)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.roberta(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
sequence_output = outputs[0]
|
||||
if return_dict:
|
||||
logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states)
|
||||
else:
|
||||
raise NotImplemented('Not implemented for using non-dictionary object')
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(logits, labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
|
||||
# Version with custom forward 2 #
|
||||
|
||||
class RobertaClassificationHeadCustomAlternative(nn.Module):
|
||||
"""Head for sentence-level classification tasks."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
|
||||
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(4 * hidden_size, hidden_size)
|
||||
classifier_dropout = (
|
||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||
)
|
||||
self.dropout = nn.Dropout(classifier_dropout)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||
|
||||
def forward(self, features, **kwargs):
|
||||
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
||||
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
|
||||
# take <s> token (equiv. to [CLS]) from hidden states from second from the end
|
||||
hidden = kwargs['hidden_states'][-2][:, 0, :]
|
||||
else:
|
||||
hidden = torch.zeros(x.size(), dtype=x.dtype, device=x.device)
|
||||
|
||||
x = self.dense_1_input(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
hidden = self.dense_1_hidden(hidden)
|
||||
hidden = torch.relu(hidden)
|
||||
hidden = self.dropout(hidden)
|
||||
|
||||
x = torch.cat((x, hidden), dim=1)
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class RobertaForSequenceClassificationCustomAlternative(RobertaForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.config = config
|
||||
|
||||
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||
self.classifier = RobertaClassificationHeadCustomAlternative(config)
|
||||
|
||||
self.init_weights()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.roberta(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
sequence_output = outputs[0]
|
||||
if return_dict:
|
||||
logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states)
|
||||
else:
|
||||
raise NotImplemented('Not implemented for using non-dictionary object')
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(logits, labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
661
scripts/run_glue.py
Normal file
661
scripts/run_glue.py
Normal file
@ -0,0 +1,661 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Finetuning the library models for sequence classification on GLUE."""
|
||||
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
from datasets import load_dataset
|
||||
|
||||
import evaluate
|
||||
import transformers
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModelForSequenceClassification,
|
||||
AutoTokenizer,
|
||||
DataCollatorWithPadding,
|
||||
EvalPrediction,
|
||||
HfArgumentParser,
|
||||
PretrainedConfig,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
default_data_collator,
|
||||
set_seed,
|
||||
)
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
from transformers.utils import check_min_version, send_example_telemetry
|
||||
from transformers.utils.versions import require_version
|
||||
from gpt2 import GPT2ForSequenceClassificationCustom
|
||||
from roberta import RobertaForSequenceClassificationCustomAlternative
|
||||
|
||||
MODEL_NAME_TO_CLASS = {
|
||||
'roberta_custom': RobertaForSequenceClassificationCustomAlternative,
|
||||
'gpt2_custom': GPT2ForSequenceClassificationCustom
|
||||
}
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.23.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
||||
|
||||
task_to_keys = {
|
||||
"cola": ("sentence", None),
|
||||
"mnli": ("premise", "hypothesis"),
|
||||
"mrpc": ("sentence1", "sentence2"),
|
||||
"qnli": ("question", "sentence"),
|
||||
"qqp": ("question1", "question2"),
|
||||
"rte": ("sentence1", "sentence2"),
|
||||
"sst2": ("sentence", None),
|
||||
"stsb": ("sentence1", "sentence2"),
|
||||
"wnli": ("sentence1", "sentence2"),
|
||||
}
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
|
||||
Using `HfArgumentParser` we can turn this class
|
||||
into argparse arguments to be able to specify them on
|
||||
the command line.
|
||||
"""
|
||||
|
||||
task_name: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
|
||||
)
|
||||
dataset_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
dataset_config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
max_seq_length: int = field(
|
||||
default=128,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
)
|
||||
},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
||||
)
|
||||
pad_to_max_length: bool = field(
|
||||
default=True,
|
||||
metadata={
|
||||
"help": (
|
||||
"Whether to pad all samples to `max_seq_length`. "
|
||||
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_train_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_eval_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_predict_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
train_file: Optional[str] = field(
|
||||
default=None, metadata={"help": "A csv or a json file containing the training data."}
|
||||
)
|
||||
validation_file: Optional[str] = field(
|
||||
default=None, metadata={"help": "A csv or a json file containing the validation data."}
|
||||
)
|
||||
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
|
||||
|
||||
def __post_init__(self):
|
||||
if self.task_name is not None:
|
||||
self.task_name = self.task_name.lower()
|
||||
if self.task_name not in task_to_keys.keys():
|
||||
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
|
||||
elif self.dataset_name is not None:
|
||||
pass
|
||||
elif self.train_file is None or self.validation_file is None:
|
||||
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
|
||||
else:
|
||||
train_extension = self.train_file.split(".")[-1]
|
||||
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
||||
validation_extension = self.validation_file.split(".")[-1]
|
||||
assert (
|
||||
validation_extension == train_extension
|
||||
), "`validation_file` should have the same extension (csv or json) as `train_file`."
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
||||
)
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
)
|
||||
},
|
||||
)
|
||||
ignore_mismatched_sizes: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
||||
)
|
||||
custom_model: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Use custom implementation from available list",
|
||||
"choices": list(MODEL_NAME_TO_CLASS.keys()),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_glue", model_args, data_args)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
handlers=[logging.StreamHandler(sys.stdout)],
|
||||
)
|
||||
|
||||
log_level = training_args.get_process_log_level()
|
||||
logger.setLevel(log_level)
|
||||
datasets.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.enable_default_handler()
|
||||
transformers.utils.logging.enable_explicit_format()
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.warning(
|
||||
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||||
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
||||
)
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
# Detecting last checkpoint.
|
||||
last_checkpoint = None
|
||||
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
||||
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
||||
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
||||
"Use --overwrite_output_dir to overcome."
|
||||
)
|
||||
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
||||
logger.info(
|
||||
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
||||
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
||||
)
|
||||
|
||||
# Set seed before initializing model.
|
||||
set_seed(training_args.seed)
|
||||
|
||||
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
||||
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
|
||||
#
|
||||
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
|
||||
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
|
||||
# label if at least two columns are provided.
|
||||
#
|
||||
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
|
||||
# single column. You can easily tweak this behavior (see below)
|
||||
#
|
||||
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
||||
# download the dataset.
|
||||
if data_args.task_name is not None:
|
||||
# Downloading and loading a dataset from the hub.
|
||||
raw_datasets = load_dataset(
|
||||
"glue",
|
||||
data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
elif data_args.dataset_name is not None:
|
||||
# Downloading and loading a dataset from the hub.
|
||||
raw_datasets = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
# Loading a dataset from your local files.
|
||||
# CSV/JSON training and evaluation files are needed.
|
||||
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
|
||||
|
||||
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
|
||||
# when you use `do_predict` without specifying a GLUE benchmark task.
|
||||
if training_args.do_predict:
|
||||
if data_args.test_file is not None:
|
||||
train_extension = data_args.train_file.split(".")[-1]
|
||||
test_extension = data_args.test_file.split(".")[-1]
|
||||
assert (
|
||||
test_extension == train_extension
|
||||
), "`test_file` should have the same extension (csv or json) as `train_file`."
|
||||
data_files["test"] = data_args.test_file
|
||||
else:
|
||||
raise ValueError("Need either a GLUE task or a test file for `do_predict`.")
|
||||
|
||||
for key in data_files.keys():
|
||||
logger.info(f"load a local file for {key}: {data_files[key]}")
|
||||
|
||||
if data_args.train_file.endswith(".csv"):
|
||||
# Loading a dataset from local csv files
|
||||
raw_datasets = load_dataset(
|
||||
"csv",
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
# Loading a dataset from local json files
|
||||
raw_datasets = load_dataset(
|
||||
"json",
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
||||
# Labels
|
||||
if data_args.task_name is not None:
|
||||
is_regression = data_args.task_name == "stsb"
|
||||
if not is_regression:
|
||||
label_list = raw_datasets["train"].features["label"].names
|
||||
num_labels = len(label_list)
|
||||
else:
|
||||
num_labels = 1
|
||||
else:
|
||||
# Trying to have good defaults here, don't hesitate to tweak to your needs.
|
||||
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
|
||||
if is_regression:
|
||||
num_labels = 1
|
||||
else:
|
||||
# A useful fast method:
|
||||
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
|
||||
label_list = raw_datasets["train"].unique("label")
|
||||
label_list.sort() # Let's sort it for determinism
|
||||
num_labels = len(label_list)
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
num_labels=num_labels,
|
||||
finetuning_task=data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
|
||||
custom_model = model_args.custom_model
|
||||
if custom_model is not None:
|
||||
if 'roberta' in custom_model and 'roberta' not in model_args.model_name_or_path:
|
||||
raise RuntimeError('Model and custom implementation should be the same type: RoBERTa')
|
||||
elif 'gpt2' in custom_model and 'gpt2' not in model_args.model_name_or_path:
|
||||
raise RuntimeError('Model and custom implementation should be the same type: GPT-2')
|
||||
config.use_hidden_states = 'hidden' in custom_model
|
||||
logger.info(f'Using hidden states in model: {config.use_hidden_states}')
|
||||
model_cls = MODEL_NAME_TO_CLASS[custom_model]
|
||||
else:
|
||||
model_cls = AutoModelForSequenceClassification
|
||||
logger.info(f'Using implementation from class: {model_cls.__name__}')
|
||||
model = model_cls.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||
)
|
||||
if model_args.model_name_or_path.startswith('roberta'):
|
||||
for name, param in model.named_parameters():
|
||||
if name.startswith('roberta.encoder.layer'):
|
||||
layer_number = name.split('.')[3]
|
||||
if int(layer_number) % 2 == 0:
|
||||
param.requires_grad = False
|
||||
frozen_layers=[(name,param.requires_grad) for (name, param) in model.named_parameters() if not param.requires_grad]
|
||||
print('\n\nFrozen layers:')
|
||||
print(frozen_layers,'\n\n')
|
||||
|
||||
if 'gpt2' in tokenizer.name_or_path and tokenizer.pad_token is None:
|
||||
logger.info(f'Set PAD token to EOS: {tokenizer.eos_token}')
|
||||
tokenizer._pad_token = tokenizer.eos_token
|
||||
model.config.pad_token_id = model.config.eos_token_id
|
||||
|
||||
# Preprocessing the raw_datasets
|
||||
if data_args.task_name is not None:
|
||||
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
|
||||
else:
|
||||
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
|
||||
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
|
||||
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
|
||||
sentence1_key, sentence2_key = "sentence1", "sentence2"
|
||||
else:
|
||||
if len(non_label_column_names) >= 2:
|
||||
sentence1_key, sentence2_key = non_label_column_names[:2]
|
||||
else:
|
||||
sentence1_key, sentence2_key = non_label_column_names[0], None
|
||||
|
||||
# Padding strategy
|
||||
if data_args.pad_to_max_length:
|
||||
padding = "max_length"
|
||||
else:
|
||||
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
|
||||
padding = False
|
||||
|
||||
# Some models have set the order of the labels to use, so let's make sure we do use it.
|
||||
label_to_id = None
|
||||
if (
|
||||
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
|
||||
and data_args.task_name is not None
|
||||
and not is_regression
|
||||
):
|
||||
# Some have all caps in their config, some don't.
|
||||
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
|
||||
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
|
||||
label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
|
||||
else:
|
||||
logger.warning(
|
||||
"Your model seems to have been trained with labels, but they don't match the dataset: ",
|
||||
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
|
||||
"\nIgnoring the model labels as a result.",
|
||||
)
|
||||
elif data_args.task_name is None and not is_regression:
|
||||
label_to_id = {v: i for i, v in enumerate(label_list)}
|
||||
|
||||
if label_to_id is not None:
|
||||
model.config.label2id = label_to_id
|
||||
model.config.id2label = {id: label for label, id in config.label2id.items()}
|
||||
elif data_args.task_name is not None and not is_regression:
|
||||
model.config.label2id = {l: i for i, l in enumerate(label_list)}
|
||||
model.config.id2label = {id: label for label, id in config.label2id.items()}
|
||||
|
||||
if data_args.max_seq_length > tokenizer.model_max_length:
|
||||
logger.warning(
|
||||
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
|
||||
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
||||
)
|
||||
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
||||
|
||||
def preprocess_function(examples):
|
||||
# Tokenize the texts
|
||||
args = (
|
||||
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
|
||||
)
|
||||
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
|
||||
|
||||
# Map labels to IDs (not necessary for GLUE tasks)
|
||||
if label_to_id is not None and "label" in examples:
|
||||
result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
|
||||
return result
|
||||
|
||||
with training_args.main_process_first(desc="dataset map pre-processing"):
|
||||
raw_datasets = raw_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc="Running tokenizer on dataset",
|
||||
)
|
||||
if training_args.do_train:
|
||||
if "train" not in raw_datasets:
|
||||
raise ValueError("--do_train requires a train dataset")
|
||||
train_dataset = raw_datasets["train"]
|
||||
if data_args.max_train_samples is not None:
|
||||
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
||||
train_dataset = train_dataset.select(range(max_train_samples))
|
||||
|
||||
if training_args.do_eval:
|
||||
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
|
||||
raise ValueError("--do_eval requires a validation dataset")
|
||||
eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
|
||||
if data_args.max_eval_samples is not None:
|
||||
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
||||
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
||||
|
||||
if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
|
||||
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
|
||||
raise ValueError("--do_predict requires a test dataset")
|
||||
predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
|
||||
if data_args.max_predict_samples is not None:
|
||||
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
||||
predict_dataset = predict_dataset.select(range(max_predict_samples))
|
||||
|
||||
# Log a few random samples from the training set:
|
||||
if training_args.do_train:
|
||||
for index in random.sample(range(len(train_dataset)), 3):
|
||||
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
||||
|
||||
# Get the metric function
|
||||
if data_args.task_name is not None:
|
||||
metric = evaluate.load("glue", data_args.task_name)
|
||||
else:
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
||||
# predictions and label_ids field) and has to return a dictionary string to float.
|
||||
def compute_metrics(p: EvalPrediction):
|
||||
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
||||
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
|
||||
if data_args.task_name is not None:
|
||||
result = metric.compute(predictions=preds, references=p.label_ids)
|
||||
if len(result) > 1:
|
||||
result["combined_score"] = np.mean(list(result.values())).item()
|
||||
return result
|
||||
elif is_regression:
|
||||
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
|
||||
else:
|
||||
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
|
||||
|
||||
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
|
||||
# we already did the padding.
|
||||
if data_args.pad_to_max_length:
|
||||
data_collator = default_data_collator
|
||||
elif training_args.fp16:
|
||||
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
||||
else:
|
||||
data_collator = None
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset if training_args.do_train else None,
|
||||
eval_dataset=eval_dataset if training_args.do_eval else None,
|
||||
compute_metrics=compute_metrics,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
checkpoint = None
|
||||
if training_args.resume_from_checkpoint is not None:
|
||||
checkpoint = training_args.resume_from_checkpoint
|
||||
elif last_checkpoint is not None:
|
||||
checkpoint = last_checkpoint
|
||||
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||||
metrics = train_result.metrics
|
||||
max_train_samples = (
|
||||
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
||||
)
|
||||
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
||||
|
||||
trainer.save_model() # Saves the tokenizer too for easy upload
|
||||
|
||||
trainer.log_metrics("train", metrics)
|
||||
trainer.save_metrics("train", metrics)
|
||||
trainer.save_state()
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
|
||||
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
||||
tasks = [data_args.task_name]
|
||||
eval_datasets = [eval_dataset]
|
||||
if data_args.task_name == "mnli":
|
||||
tasks.append("mnli-mm")
|
||||
valid_mm_dataset = raw_datasets["validation_mismatched"]
|
||||
if data_args.max_eval_samples is not None:
|
||||
max_eval_samples = min(len(valid_mm_dataset), data_args.max_eval_samples)
|
||||
valid_mm_dataset = valid_mm_dataset.select(range(max_eval_samples))
|
||||
eval_datasets.append(valid_mm_dataset)
|
||||
combined = {}
|
||||
|
||||
for eval_dataset, task in zip(eval_datasets, tasks):
|
||||
metrics = trainer.evaluate(eval_dataset=eval_dataset)
|
||||
|
||||
max_eval_samples = (
|
||||
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
||||
)
|
||||
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
||||
|
||||
if task == "mnli-mm":
|
||||
metrics = {k + "_mm": v for k, v in metrics.items()}
|
||||
if task is not None and "mnli" in task:
|
||||
combined.update(metrics)
|
||||
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
|
||||
|
||||
if training_args.do_predict:
|
||||
logger.info("*** Predict ***")
|
||||
|
||||
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
||||
tasks = [data_args.task_name]
|
||||
predict_datasets = [predict_dataset]
|
||||
if data_args.task_name == "mnli":
|
||||
tasks.append("mnli-mm")
|
||||
predict_datasets.append(raw_datasets["test_mismatched"])
|
||||
|
||||
for predict_dataset, task in zip(predict_datasets, tasks):
|
||||
# Removing the `label` columns because it contains -1 and Trainer won't like that.
|
||||
predict_dataset = predict_dataset.remove_columns("label")
|
||||
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
|
||||
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
|
||||
|
||||
output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
|
||||
if trainer.is_world_process_zero():
|
||||
with open(output_predict_file, "w") as writer:
|
||||
logger.info(f"***** Predict results {task} *****")
|
||||
writer.write("index\tprediction\n")
|
||||
for index, item in enumerate(predictions):
|
||||
if is_regression:
|
||||
writer.write(f"{index}\t{item:3.3f}\n")
|
||||
else:
|
||||
item = label_list[item]
|
||||
writer.write(f"{index}\t{item}\n")
|
||||
|
||||
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
|
||||
if data_args.task_name is not None:
|
||||
kwargs["language"] = "en"
|
||||
kwargs["dataset_tags"] = "glue"
|
||||
kwargs["dataset_args"] = data_args.task_name
|
||||
kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"
|
||||
|
||||
if training_args.push_to_hub:
|
||||
trainer.push_to_hub(**kwargs)
|
||||
else:
|
||||
trainer.create_model_card(**kwargs)
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
707
scripts/run_translation.py
Normal file
707
scripts/run_translation.py
Normal file
@ -0,0 +1,707 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Fine-tuning the library models for sequence to sequence.
|
||||
"""
|
||||
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
||||
from collections import defaultdict
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
import torch
|
||||
import datasets
|
||||
import numpy as np
|
||||
from datasets import load_dataset
|
||||
|
||||
import evaluate
|
||||
import transformers
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModelForSeq2SeqLM,
|
||||
AutoTokenizer,
|
||||
DataCollatorForSeq2Seq,
|
||||
HfArgumentParser,
|
||||
M2M100Tokenizer,
|
||||
MBart50Tokenizer,
|
||||
MBart50TokenizerFast,
|
||||
MBartTokenizer,
|
||||
MBartTokenizerFast,
|
||||
Seq2SeqTrainer,
|
||||
Seq2SeqTrainingArguments,
|
||||
default_data_collator,
|
||||
set_seed,
|
||||
)
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
from transformers.utils import check_min_version, send_example_telemetry
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.23.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# A list of all multilingual tokenizer which require src_lang and tgt_lang attributes.
|
||||
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]
|
||||
|
||||
MAP_LABEL_TRANSLATION = {
|
||||
0: 'sadness',
|
||||
1: 'joy',
|
||||
2: 'love',
|
||||
3: 'anger',
|
||||
4: 'fear',
|
||||
5: 'surprise',
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
||||
)
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
)
|
||||
},
|
||||
)
|
||||
freeze_weights: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Freeze encoder weights"},
|
||||
)
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
"""
|
||||
|
||||
source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
|
||||
target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})
|
||||
|
||||
dataset_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
dataset_config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
|
||||
validation_file: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file."
|
||||
},
|
||||
)
|
||||
test_file: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
preprocessing_num_workers: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of processes to use for the preprocessing."},
|
||||
)
|
||||
max_source_length: Optional[int] = field(
|
||||
default=1024,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_target_length: Optional[int] = field(
|
||||
default=128,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total sequence length for target text after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
)
|
||||
},
|
||||
)
|
||||
val_max_target_length: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
|
||||
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
|
||||
"during ``evaluate`` and ``predict``."
|
||||
)
|
||||
},
|
||||
)
|
||||
pad_to_max_length: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": (
|
||||
"Whether to pad all samples to model maximum sentence length. "
|
||||
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
||||
"efficient on GPU but very bad for TPU."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_train_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_eval_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_predict_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
num_beams: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
|
||||
"which is used during ``evaluate`` and ``predict``."
|
||||
)
|
||||
},
|
||||
)
|
||||
ignore_pad_token_for_loss: bool = field(
|
||||
default=True,
|
||||
metadata={
|
||||
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
||||
},
|
||||
)
|
||||
source_prefix: Optional[str] = field(
|
||||
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
|
||||
)
|
||||
forced_bos_token: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
|
||||
" multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
|
||||
" be the target language token.(Usually it is the target language token)"
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
||||
raise ValueError("Need either a dataset name or a training/validation file.")
|
||||
elif self.source_lang is None or self.target_lang is None:
|
||||
raise ValueError("Need to specify the source language and the target language.")
|
||||
|
||||
# accepting both json and jsonl file extensions, as
|
||||
# many jsonlines files actually have a .json extension
|
||||
valid_extensions = ["json", "jsonl"]
|
||||
|
||||
if self.train_file is not None:
|
||||
extension = self.train_file.split(".")[-1]
|
||||
assert extension in valid_extensions, "`train_file` should be a jsonlines file."
|
||||
if self.validation_file is not None:
|
||||
extension = self.validation_file.split(".")[-1]
|
||||
assert extension in valid_extensions, "`validation_file` should be a jsonlines file."
|
||||
if self.val_max_target_length is None:
|
||||
self.val_max_target_length = self.max_target_length
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_translation", model_args, data_args)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
handlers=[logging.StreamHandler(sys.stdout)],
|
||||
)
|
||||
|
||||
log_level = training_args.get_process_log_level()
|
||||
logger.setLevel(log_level)
|
||||
datasets.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.enable_default_handler()
|
||||
transformers.utils.logging.enable_explicit_format()
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.warning(
|
||||
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||||
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
||||
)
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
if data_args.source_prefix is None and model_args.model_name_or_path in [
|
||||
"t5-small",
|
||||
"t5-base",
|
||||
"t5-large",
|
||||
"t5-3b",
|
||||
"t5-11b",
|
||||
]:
|
||||
logger.warning(
|
||||
"You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
|
||||
"`--source_prefix 'translate English to German: ' `"
|
||||
)
|
||||
|
||||
# Detecting last checkpoint.
|
||||
last_checkpoint = None
|
||||
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
||||
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
||||
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
||||
"Use --overwrite_output_dir to overcome."
|
||||
)
|
||||
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
||||
logger.info(
|
||||
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
||||
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
||||
)
|
||||
|
||||
# Set seed before initializing model.
|
||||
set_seed(training_args.seed)
|
||||
|
||||
# Get the datasets: you can either provide your own JSON training and evaluation files (see below)
|
||||
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
||||
# (the dataset will be downloaded automatically from the datasets Hub).
|
||||
#
|
||||
# For translation, only JSON files are supported, with one field named "translation" containing two keys for the
|
||||
# source and target languages (unless you adapt what follows).
|
||||
#
|
||||
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
||||
# download the dataset.
|
||||
if data_args.dataset_name is not None:
|
||||
# Downloading and loading a dataset from the hub.
|
||||
raw_datasets = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
if data_args.train_file is not None:
|
||||
data_files["train"] = data_args.train_file
|
||||
extension = data_args.train_file.split(".")[-1]
|
||||
if data_args.validation_file is not None:
|
||||
data_files["validation"] = data_args.validation_file
|
||||
extension = data_args.validation_file.split(".")[-1]
|
||||
if data_args.test_file is not None:
|
||||
data_files["test"] = data_args.test_file
|
||||
extension = data_args.test_file.split(".")[-1]
|
||||
raw_datasets = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# Distributed training:
|
||||
# The .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
if model_args.model_name_or_path.startswith('google/t5'):
|
||||
for name, param in model.named_parameters():
|
||||
if name.startswith('encoder.block'):
|
||||
num_block = name.split('.')[2]
|
||||
num_layer = name.split('.')[4]
|
||||
if int(num_block) and int(num_layer) in [0,1]:
|
||||
param.requires_grad = False
|
||||
frozen_layers=[(name,param.requires_grad) for (name, param) in model.named_parameters() if not param.requires_grad]
|
||||
print('\n\nFrozen layers:')
|
||||
print(frozen_layers,'\n\n')
|
||||
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# Set decoder_start_token_id
|
||||
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
|
||||
if isinstance(tokenizer, MBartTokenizer):
|
||||
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
|
||||
else:
|
||||
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)
|
||||
|
||||
if model.config.decoder_start_token_id is None:
|
||||
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
||||
|
||||
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
||||
if 'classification' not in prefix:
|
||||
raise RuntimeError('Not found "classification" prefix!')
|
||||
prefix = prefix.strip()
|
||||
if not prefix.endswith(':'):
|
||||
prefix += ':'
|
||||
prefix += ' '
|
||||
logger.info(f'Using translation prefix: "{prefix}"')
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# We need to tokenize inputs and targets.
|
||||
if training_args.do_train:
|
||||
column_names = raw_datasets["train"].column_names
|
||||
elif training_args.do_eval:
|
||||
column_names = raw_datasets["validation"].column_names
|
||||
elif training_args.do_predict:
|
||||
column_names = raw_datasets["test"].column_names
|
||||
else:
|
||||
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
||||
return
|
||||
|
||||
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
|
||||
# ignore those attributes).
|
||||
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
|
||||
assert data_args.target_lang is not None and data_args.source_lang is not None, (
|
||||
f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
|
||||
"--target_lang arguments."
|
||||
)
|
||||
|
||||
tokenizer.src_lang = 'text'
|
||||
tokenizer.tgt_lang = 'label'
|
||||
|
||||
# For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
|
||||
# as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
|
||||
forced_bos_token_id = (
|
||||
tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
|
||||
)
|
||||
model.config.forced_bos_token_id = forced_bos_token_id
|
||||
|
||||
# Get the language codes for input/target.
|
||||
source_lang = 'text'
|
||||
target_lang = 'label'
|
||||
|
||||
# Temporarily set max_target_length for training.
|
||||
max_target_length = data_args.max_target_length
|
||||
padding = "max_length" if data_args.pad_to_max_length else False
|
||||
|
||||
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
|
||||
logger.warning(
|
||||
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
|
||||
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
|
||||
)
|
||||
|
||||
def preprocess_function(examples):
|
||||
inputs = [ex for ex in examples[source_lang]]
|
||||
targets = [ex for ex in examples[target_lang]]
|
||||
inputs = [prefix + inp for inp in inputs]
|
||||
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
|
||||
|
||||
# Tokenize targets with the `text_target` keyword argument
|
||||
labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
|
||||
|
||||
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
||||
# padding in the loss.
|
||||
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
|
||||
labels["input_ids"] = [
|
||||
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
||||
]
|
||||
|
||||
model_inputs["labels"] = labels["input_ids"]
|
||||
return model_inputs
|
||||
|
||||
if training_args.do_train:
|
||||
if "train" not in raw_datasets:
|
||||
raise ValueError("--do_train requires a train dataset")
|
||||
train_dataset = raw_datasets["train"]
|
||||
if data_args.max_train_samples is not None:
|
||||
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
||||
train_dataset = train_dataset.select(range(max_train_samples))
|
||||
with training_args.main_process_first(desc="train dataset map pre-processing"):
|
||||
train_dataset = train_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc="Running tokenizer on train dataset",
|
||||
)
|
||||
|
||||
if training_args.do_eval:
|
||||
max_target_length = data_args.val_max_target_length
|
||||
if "validation" not in raw_datasets:
|
||||
raise ValueError("--do_eval requires a validation dataset")
|
||||
eval_dataset = raw_datasets["validation"]
|
||||
if data_args.max_eval_samples is not None:
|
||||
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
||||
label_to_indexes = defaultdict(list)
|
||||
for index, eval_sample in enumerate(eval_dataset):
|
||||
label_to_indexes[eval_sample['label']].append(index)
|
||||
max_samples_per_label = int(max_eval_samples / len(label_to_indexes))
|
||||
eval_sample_indexes = []
|
||||
for label, indexes in label_to_indexes.items():
|
||||
eval_sample_indexes.extend(indexes[:max_samples_per_label])
|
||||
logger.info(f"Set {max_samples_per_label} samples for {label}-class")
|
||||
eval_sample_indexes.sort()
|
||||
eval_dataset = eval_dataset.select(eval_sample_indexes)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
||||
eval_dataset = eval_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc="Running tokenizer on validation dataset",
|
||||
)
|
||||
|
||||
if training_args.do_predict:
|
||||
max_target_length = data_args.val_max_target_length
|
||||
if "test" not in raw_datasets:
|
||||
raise ValueError("--do_predict requires a test dataset")
|
||||
predict_dataset = raw_datasets["test"]
|
||||
if data_args.max_predict_samples is not None:
|
||||
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
||||
predict_dataset = predict_dataset.select(range(max_predict_samples))
|
||||
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
||||
predict_dataset = predict_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc="Running tokenizer on prediction dataset",
|
||||
)
|
||||
|
||||
# Data collator
|
||||
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
||||
if data_args.pad_to_max_length:
|
||||
data_collator = default_data_collator
|
||||
else:
|
||||
data_collator = DataCollatorForSeq2Seq(
|
||||
tokenizer,
|
||||
model=model,
|
||||
label_pad_token_id=label_pad_token_id,
|
||||
pad_to_multiple_of=8 if training_args.fp16 else None,
|
||||
)
|
||||
|
||||
# Metric
|
||||
metric = evaluate.load("sacrebleu")
|
||||
metric_accuracy = evaluate.load("accuracy")
|
||||
|
||||
def postprocess_text(preds, labels):
|
||||
preds = [pred.strip() for pred in preds]
|
||||
labels = [[label.strip()] for label in labels]
|
||||
|
||||
return preds, labels
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||
if data_args.ignore_pad_token_for_loss:
|
||||
# Replace -100 in the labels as we can't decode them.
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||||
|
||||
# Some simple post-processing
|
||||
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
|
||||
decoded_preds_accuracy = [MAP_LABEL_TRANSLATION.get(decoded_pred, -1) for decoded_pred in decoded_preds]
|
||||
decoded_labels_accuracy = [MAP_LABEL_TRANSLATION.get(decoded_label[0], -1) for decoded_label in decoded_labels]
|
||||
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
result_accuracy = metric_accuracy.compute(predictions=decoded_preds_accuracy, references=decoded_labels_accuracy)
|
||||
result = {"bleu": result["score"], "accuracy": result_accuracy["accuracy"]}
|
||||
|
||||
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
||||
result["gen_len"] = np.mean(prediction_lens)
|
||||
result = {k: round(v, 4) for k, v in result.items()}
|
||||
return result
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Seq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset if training_args.do_train else None,
|
||||
eval_dataset=eval_dataset if training_args.do_eval else None,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
checkpoint = None
|
||||
if training_args.resume_from_checkpoint is not None:
|
||||
checkpoint = training_args.resume_from_checkpoint
|
||||
elif last_checkpoint is not None:
|
||||
checkpoint = last_checkpoint
|
||||
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||||
trainer.save_model() # Saves the tokenizer too for easy upload
|
||||
|
||||
metrics = train_result.metrics
|
||||
max_train_samples = (
|
||||
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
||||
)
|
||||
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
||||
|
||||
trainer.log_metrics("train", metrics)
|
||||
trainer.save_metrics("train", metrics)
|
||||
trainer.save_state()
|
||||
|
||||
# Evaluation
|
||||
results = {}
|
||||
max_length = (
|
||||
training_args.generation_max_length
|
||||
if training_args.generation_max_length is not None
|
||||
else data_args.val_max_target_length
|
||||
)
|
||||
num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
|
||||
metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
|
||||
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
||||
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
||||
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
if training_args.do_predict:
|
||||
logger.info("*** Predict ***")
|
||||
|
||||
predict_results = trainer.predict(
|
||||
predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
|
||||
)
|
||||
metrics = predict_results.metrics
|
||||
max_predict_samples = (
|
||||
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
|
||||
)
|
||||
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
|
||||
|
||||
trainer.log_metrics("predict", metrics)
|
||||
trainer.save_metrics("predict", metrics)
|
||||
|
||||
if trainer.is_world_process_zero():
|
||||
if training_args.predict_with_generate:
|
||||
predictions = tokenizer.batch_decode(
|
||||
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
||||
)
|
||||
predictions = [pred.strip() for pred in predictions]
|
||||
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
|
||||
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
||||
writer.write("\n".join(predictions))
|
||||
|
||||
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
|
||||
if data_args.dataset_name is not None:
|
||||
kwargs["dataset_tags"] = data_args.dataset_name
|
||||
if data_args.dataset_config_name is not None:
|
||||
kwargs["dataset_args"] = data_args.dataset_config_name
|
||||
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
||||
else:
|
||||
kwargs["dataset"] = data_args.dataset_name
|
||||
|
||||
languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
|
||||
if len(languages) > 0:
|
||||
kwargs["language"] = languages
|
||||
|
||||
if training_args.push_to_hub:
|
||||
trainer.push_to_hub(**kwargs)
|
||||
else:
|
||||
trainer.create_model_card(**kwargs)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user