custom head mod for roberta and gpt

This commit is contained in:
Aleksandra Jonas 2023-02-15 18:12:44 +01:00
parent 0cd501c915
commit f87045eaec
3 changed files with 335 additions and 4 deletions

186
custom_gpt.py Normal file
View File

@ -0,0 +1,186 @@
import logging
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
from transformers import GPT2Model, GPT2ForSequenceClassification
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
logger = logging.getLogger(__name__)
class GPT2ClassificationHeadCustomFIX(nn.Module):
def __init__(self, config):
super().__init__()
hidden_size = config.n_embd
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_2 = nn.Linear(2 * hidden_size, 2 * hidden_size)
self.dense_2_hidden = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_3 = nn.Linear(2 * hidden_size, 2 * hidden_size)
self.dense_3_hidden = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_4 = nn.Linear(2 * hidden_size, hidden_size)
self.dropout = nn.Dropout(config.resid_pdrop)
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
def forward(self, x, **kwargs):
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
hidden_a = torch.cat(kwargs['hidden_states'][-2:])
else:
hidden_a = torch.zeros(x.size(), dtype=x.dtype, device=x.device)
x = self.dense_1_input(x)
x = torch.relu(x)
x = self.dropout(x)
hidden = self.dense_1_hidden(hidden_a)
hidden = torch.relu(hidden)
hidden = self.dropout(hidden)
x = torch.cat((x, hidden))
x = self.dense_2(x)
x = torch.relu(x)
x = self.dropout(x)
hidden = self.dense_2_hidden(hidden_a)
hidden = torch.relu(hidden)
hidden = self.dropout(hidden)
x = torch.cat((x, hidden))
x = self.dense_3(x)
x = torch.relu(x)
x = self.dropout(x)
hidden = self.dense_3_hidden(hidden_a)
hidden = torch.relu(hidden)
hidden = self.dropout(hidden)
x = torch.cat((x, hidden))
x = self.dense_4(x)
x = torch.relu(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class GPT2ForSequenceClassificationCustomFIX(GPT2ForSequenceClassification):
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.score = GPT2ClassificationHeadCustomFIX(config)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states, hidden_states=transformer_outputs.hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)

145
custom_roberta.py Normal file
View File

@ -0,0 +1,145 @@
from typing import Optional, Union, Tuple
import torch
from torch import nn
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
from transformers import RobertaForSequenceClassification, RobertaModel
from transformers.modeling_outputs import SequenceClassifierOutput
class RobertaClassificationHeadCustomFIX(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
hidden_size = config.hidden_size
self.dense_1_input = nn.Linear(hidden_size, 8 * hidden_size)
self.dense_1_hidden = nn.Linear(hidden_size, 8 * hidden_size)
self.dense_2 = nn.Linear(16 * hidden_size, 8 * hidden_size)
self.dense_3 = nn.Linear(8 * hidden_size, 4 * hidden_size)
self.dense_4 = nn.Linear(4 * hidden_size, hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.relu = nn.LeakyReLU()
self.out_proj = nn.Linear(hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
# take <s> token (equiv. to [CLS]) from hidden states from second from the end
hidden = kwargs['hidden_states'][-2][:, 0, :]
else:
hidden = torch.zeros(x.size(), dtype=x.dtype, device=x.device)
x = self.dense_1_input(x)
x = self.relu(x)
x = self.dropout(x)
hidden = self.dense_1_hidden(hidden)
hidden = self.relu(hidden)
hidden = self.dropout(hidden)
x = torch.cat((x, hidden), dim=1)
x = self.dense_2(x)
x = self.relu(x)
x = self.dropout(x)
x = self.dense_3(x)
x = self.relu(x)
x = self.dropout(x)
x = self.dense_4(x)
x = self.relu(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class RobertaForSequenceClassificationCustomFIX(RobertaForSequenceClassification):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.classifier = RobertaClassificationHeadCustomFIX(config)
self.init_weights()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if return_dict:
logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states)
else:
raise NotImplemented('Not implemented for using non-dictionary object')
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -45,12 +45,12 @@ from transformers import (
from transformers.trainer_utils import get_last_checkpoint from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version from transformers.utils.versions import require_version
from gpt2 import GPT2ForSequenceClassificationCustom from custom_gpt import GPT2ForSequenceClassificationCustomFIX
from roberta import RobertaForSequenceClassificationCustomAlternative from custom_roberta import RobertaForSequenceClassificationCustomFIX
MODEL_NAME_TO_CLASS = { MODEL_NAME_TO_CLASS = {
'roberta_custom': RobertaForSequenceClassificationCustomAlternative, 'roberta_custom': RobertaForSequenceClassificationCustomFIX,
'gpt2_custom': GPT2ForSequenceClassificationCustom 'gpt2_custom': GPT2ForSequenceClassificationCustomFIX
} }
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.23.0") check_min_version("4.23.0")