2019-05-13 17:47:18 +02:00
---
2019-05-13 20:08:00 +02:00
title: "BAD_Analytics_Project"
2019-05-13 17:47:18 +02:00
author: "Marcin Kostrzewski"
date: "13/05/2019"
output: pdf_document
---
2019-05-13 20:08:00 +02:00
Raport został wygenerowany przy użyciu danych udostępnionych przez [Departament Transportu Stanów Zjednoczonych](https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236)
2019-05-13 17:47:18 +02:00
```{r, echo=FALSE}
con <- DBI::dbConnect(odbc::odbc(),
driver = "SQL Server",
database = "dbad_flights",
UID = "dbad_s444409",
PWD = "qAOKvlYA6e",
server = "mssql-2016.labs.wmi.amu.edu.pl",
port = 5432)
```
2019-05-13 20:08:00 +02:00
# Jakie było średnie opóźnienie przylotu?
2019-05-13 17:47:18 +02:00
```{sql, connection=con, tab.cap = NA}
SELECT CAST(AVG(arr_delay) AS NUMERIC(30,3)) AS 'Average delay (minutes)'
FROM Flight_delays
WHERE arr_delay IS NOT NULL;
```
2019-05-13 20:08:00 +02:00
# Jakie było maksymalne opóźnienie przylotu?
2019-05-13 17:47:18 +02:00
```{sql, connection=con, tab.cap = NA}
SELECT CAST(MAX(arr_delay)/60 AS NUMERIC(30,3)) AS 'Max delay (hours)'
FROM Flight_delays
WHERE arr_delay IS NOT NULL;
```
2019-05-13 20:08:00 +02:00
# Który lot miał największe opóźnienie przylotu?
2019-05-13 17:47:18 +02:00
```{sql, connection=con, tab.cap = NA}
SELECT carrier AS 'Carrier',
origin_city_name AS 'Origin',
dest_city_name AS 'Destination',
fl_date AS 'Date',
arr_delay AS 'Delay (minutes)'
FROM Flight_delays
WHERE arr_delay = (SELECT MAX(arr_delay)
FROM Flight_delays
WHERE arr_delay IS NOT NULL);
```
2019-05-13 20:08:00 +02:00
# Które dni tygodnia są najgorsze do podróżowania?
2019-05-13 17:47:18 +02:00
```{sql, connection=con, tab.cap = NA}
SELECT CASE WHEN day_of_week = 1 THEN 'Monday'
WHEN day_of_week = 2 THEN 'Tuesday'
WHEN day_of_week = 3 THEN 'Wednesday'
WHEN day_of_week = 4 THEN 'Thursday'
WHEN day_of_week = 5 THEN 'Friday'
WHEN day_of_week = 6 THEN 'Saturday'
WHEN day_of_week = 7 THEN 'Sunday'
END AS 'Day',
AVG(arr_delay) AS 'Average Delay (minutes)'
FROM Flight_delays
GROUP BY day_of_week
ORDER BY AVG(arr_delay) DESC;
```
2019-05-13 20:08:00 +02:00
# Które linie lotnicze latające z San Francisco (SFO) mają najmniejsze opóźnienia przylotu?
2019-05-13 17:47:18 +02:00
```{sql, connection=con, tab.cap = NA}
SELECT F1.carrier AS 'Carrier',
(SELECT AVG(F2.arr_delay) AS 'avg_delay'
FROM Flight_delays F2
WHERE F1.carrier = F2.carrier
GROUP BY F2.carrier) AS 'Delay (minutes)'
FROM Flight_delays F1
WHERE F1.origin_city_name LIKE 'San Francisco%'
GROUP BY F1.carrier
ORDER BY "Delay (minutes)" ASC;
```
*Pojawiające się w tabeli wartości ujemne oznaczają, że średnio samoloty lądowały wcześniej, niż przewidziano, czyli były przyśpieszone.*
2019-05-13 20:08:00 +02:00
# Jaka część linii lotniczych ma regularne opóźnienia, tj. jej lot ma średnio co najmniej 10 min. opóźnienia?
2019-05-13 17:47:18 +02:00
```{sql, connection=con, tab.cap = NA, echo=FALSE}
SELECT (SELECT COUNT(*)
FROM (SELECT F1.carrier,
(SELECT AVG(arr_delay)
FROM Flight_delays F2
WHERE F1.carrier=F2.carrier
GROUP BY F2.carrier
HAVING AVG(F1.arr_delay)>10) AS 'avg_delay'
FROM Flight_delays F1
GROUP BY F1.carrier) AS t
WHERE t.avg_delay IS NOT NULL) / CAST((SELECT COUNT(*)
FROM (SELECT COUNT(*) AS 'count'
FROM Flight_delays
GROUP BY carrier) AS T) AS FLOAT) AS 'Part of continuous delays';
```
2019-05-13 20:08:00 +02:00
# Jak opóźnienia wylotów wpływają na opóźnienia przylotów?
```{r, connection=con, tab.cap = NA}
2019-05-13 17:47:18 +02:00
data <- DBI::dbGetQuery(con, "SELECT dep_delay,
arr_delay
FROM Flight_delays
WHERE dep_delay IS NOT NULL AND arr_delay IS NOT NULL;")
library(knitr)
res <- cor(data, use = "all", method = "pearson")
kable(res[2:2])
```
2019-05-13 20:08:00 +02:00
# Która linia lotnicza miała największy wzrost (w wartościach bezwzględnych) średniego opóźnienia przylotów w ostatnim tygodniu miesiąca, tj. między 1-23 a 24-31 lipca?
```{sql, connection=con, tab.cap = NA, max.print = NA}
SET NOCOUNT ON
DECLARE @1_23avg TABLE
(
carrier VARCHAR(50),
avg FLOAT
);
INSERT INTO @1_23avg
SELECT carrier,
AVG(avg1) AS 'avg1A'
FROM (SELECT carrier,
AVG(arr_delay) AS 'avg1'
FROM Flight_delays
WHERE month = 7
GROUP BY carrier, day_of_month
HAVING day_of_month BETWEEN 1 AND 23) AS T1
GROUP BY carrier;
DECLARE @24_31avg TABLE
(
carrier VARCHAR(50),
avg FLOAT
);
INSERT INTO @24_31avg
SELECT carrier,
AVG(avg2) AS 'avg2A'
FROM (SELECT carrier,
AVG(arr_delay) AS 'avg2'
FROM Flight_delays
WHERE month = 7
GROUP BY carrier, day_of_month
HAVING day_of_month BETWEEN 24 AND 31) AS T2
GROUP BY carrier;
SET NOCOUNT OFF;
SELECT T1.carrier AS 'Carrier',
T1.avg-T2.avg AS 'Delay growth'
FROM @1_23avg T1 INNER JOIN @24_31avg T2
ON T1.carrier = T2.carrier
ORDER BY T1.avg-T2.avg DESC;
```
# Które linie lotnicze latają zarówno na trasie SFO → PDX (Portland), jak i SFO → EUG (Eugene)?
```{sql, connection=con, tab.cap = NA}
SELECT DISTINCT carrier AS 'Carrier'
FROM Flight_delays
WHERE origin LIKE 'SFO'
AND
(dest IN ('PDX', 'EUG'))
```
# Jak najszybciej dostać się z Chicago do Stanfordu, zakładając wylot po 14:00 czasu lokalnego?
```{sql, connection=con, tab.cap = NA}
SELECT origin AS 'Origin',
dest AS 'Destination',
AVG(arr_delay) AS 'Delay'
FROM Flight_delays
WHERE origin IN ('MDW', 'ORD')
AND dest IN ('SFO', 'SJC', 'OAK')
AND crs_dep_time>1400
GROUP BY origin, dest
ORDER BY AVG(arr_delay) DESC;
```