110 lines
3.7 KiB
Plaintext
110 lines
3.7 KiB
Plaintext
|
---
|
||
|
title: "BAD_Proj_Analytics"
|
||
|
author: "Marcin Kostrzewski"
|
||
|
date: "13/05/2019"
|
||
|
output: pdf_document
|
||
|
---
|
||
|
|
||
|
```{r, echo=FALSE}
|
||
|
con <- DBI::dbConnect(odbc::odbc(),
|
||
|
driver = "SQL Server",
|
||
|
database = "dbad_flights",
|
||
|
UID = "dbad_s444409",
|
||
|
PWD = "qAOKvlYA6e",
|
||
|
server = "mssql-2016.labs.wmi.amu.edu.pl",
|
||
|
port = 5432)
|
||
|
```
|
||
|
|
||
|
## Jakie było średnie opóźnienie przylotu?
|
||
|
|
||
|
```{sql, connection=con, tab.cap = NA}
|
||
|
SELECT CAST(AVG(arr_delay) AS NUMERIC(30,3)) AS 'Average delay (minutes)'
|
||
|
FROM Flight_delays
|
||
|
WHERE arr_delay IS NOT NULL;
|
||
|
```
|
||
|
|
||
|
## Jakie było maksymalne opóźnienie przylotu?
|
||
|
|
||
|
```{sql, connection=con, tab.cap = NA}
|
||
|
SELECT CAST(MAX(arr_delay)/60 AS NUMERIC(30,3)) AS 'Max delay (hours)'
|
||
|
FROM Flight_delays
|
||
|
WHERE arr_delay IS NOT NULL;
|
||
|
```
|
||
|
|
||
|
## Który lot miał największe opóźnienie przylotu?
|
||
|
|
||
|
```{sql, connection=con, tab.cap = NA}
|
||
|
SELECT carrier AS 'Carrier',
|
||
|
origin_city_name AS 'Origin',
|
||
|
dest_city_name AS 'Destination',
|
||
|
fl_date AS 'Date',
|
||
|
arr_delay AS 'Delay (minutes)'
|
||
|
FROM Flight_delays
|
||
|
WHERE arr_delay = (SELECT MAX(arr_delay)
|
||
|
FROM Flight_delays
|
||
|
WHERE arr_delay IS NOT NULL);
|
||
|
```
|
||
|
|
||
|
## Które dni tygodnia są najgorsze do podróżowania?
|
||
|
|
||
|
```{sql, connection=con, tab.cap = NA}
|
||
|
SELECT CASE WHEN day_of_week = 1 THEN 'Monday'
|
||
|
WHEN day_of_week = 2 THEN 'Tuesday'
|
||
|
WHEN day_of_week = 3 THEN 'Wednesday'
|
||
|
WHEN day_of_week = 4 THEN 'Thursday'
|
||
|
WHEN day_of_week = 5 THEN 'Friday'
|
||
|
WHEN day_of_week = 6 THEN 'Saturday'
|
||
|
WHEN day_of_week = 7 THEN 'Sunday'
|
||
|
END AS 'Day',
|
||
|
AVG(arr_delay) AS 'Average Delay (minutes)'
|
||
|
FROM Flight_delays
|
||
|
GROUP BY day_of_week
|
||
|
ORDER BY AVG(arr_delay) DESC;
|
||
|
```
|
||
|
|
||
|
## Które linie lotnicze latające z San Francisco (SFO) mają najmniejsze opóźnienia przylotu?
|
||
|
|
||
|
```{sql, connection=con, tab.cap = NA}
|
||
|
SELECT F1.carrier AS 'Carrier',
|
||
|
(SELECT AVG(F2.arr_delay) AS 'avg_delay'
|
||
|
FROM Flight_delays F2
|
||
|
WHERE F1.carrier = F2.carrier
|
||
|
GROUP BY F2.carrier) AS 'Delay (minutes)'
|
||
|
FROM Flight_delays F1
|
||
|
WHERE F1.origin_city_name LIKE 'San Francisco%'
|
||
|
GROUP BY F1.carrier
|
||
|
ORDER BY "Delay (minutes)" ASC;
|
||
|
```
|
||
|
|
||
|
*Pojawiające się w tabeli wartości ujemne oznaczają, że średnio samoloty lądowały wcześniej, niż przewidziano, czyli były przyśpieszone.*
|
||
|
|
||
|
## Jaka część linii lotniczych ma regularne opóźnienia, tj. jej lot ma średnio co najmniej 10 min. opóźnienia?
|
||
|
|
||
|
```{sql, connection=con, tab.cap = NA, echo=FALSE}
|
||
|
SELECT (SELECT COUNT(*)
|
||
|
FROM (SELECT F1.carrier,
|
||
|
(SELECT AVG(arr_delay)
|
||
|
FROM Flight_delays F2
|
||
|
WHERE F1.carrier=F2.carrier
|
||
|
GROUP BY F2.carrier
|
||
|
HAVING AVG(F1.arr_delay)>10) AS 'avg_delay'
|
||
|
FROM Flight_delays F1
|
||
|
GROUP BY F1.carrier) AS t
|
||
|
WHERE t.avg_delay IS NOT NULL) / CAST((SELECT COUNT(*)
|
||
|
FROM (SELECT COUNT(*) AS 'count'
|
||
|
FROM Flight_delays
|
||
|
GROUP BY carrier) AS T) AS FLOAT) AS 'Part of continuous delays';
|
||
|
```
|
||
|
|
||
|
## Jak opóźnienia wylotów wpływają na opóźnienia przylotów?
|
||
|
```{r, con, echo=FALSE}
|
||
|
data <- DBI::dbGetQuery(con, "SELECT dep_delay,
|
||
|
arr_delay
|
||
|
FROM Flight_delays
|
||
|
WHERE dep_delay IS NOT NULL AND arr_delay IS NOT NULL;")
|
||
|
|
||
|
library(knitr)
|
||
|
res <- cor(data, use = "all", method = "pearson")
|
||
|
kable(res[2:2])
|
||
|
```
|