33 lines
1015 B
Python
33 lines
1015 B
Python
|
from random import randint
|
||
|
import random
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
from math import sqrt
|
||
|
from scipy import stats
|
||
|
from scipy.stats import sem
|
||
|
from scipy.stats import t
|
||
|
import matplotlib.pyplot as plt
|
||
|
from statistics import mean, stdev
|
||
|
from scipy.stats import ttest_ind, ttest_1samp, ttest_rel
|
||
|
|
||
|
man_heights = np.random.normal(175, 10, 500)
|
||
|
woman_heights = np.array([x-randint(1, 10) for x in man_heights])
|
||
|
|
||
|
weights_before = np.random.normal(80, 10, 500)
|
||
|
weights_after = np.array([x-randint(1, 5) for x in weights_before])
|
||
|
|
||
|
man_heights = np.round(man_heights, 2)
|
||
|
woman_heights = np.round(woman_heights, 2)
|
||
|
weights_before = np.round(weights_before, 2)
|
||
|
weights_after = np.round(weights_after, 2)
|
||
|
|
||
|
dataset = pd.read_csv('experiment_data.csv')
|
||
|
|
||
|
dataset['Weight before'] = weights_before
|
||
|
dataset['Weight after'] = weights_after
|
||
|
|
||
|
dataset['Male height'] = man_heights
|
||
|
dataset['Female height'] = woman_heights
|
||
|
|
||
|
dataset.to_csv("experiment_data2.csv", encoding="utf-8", index=False)
|