Initial implementation
This commit is contained in:
parent
894644b4b8
commit
7e0cf14302
157
bootstrap-t.ipynb
Normal file
157
bootstrap-t.ipynb
Normal file
@ -0,0 +1,157 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"from math import sqrt\n",
|
||||
"from scipy.stats import sem\n",
|
||||
"from scipy.stats import t"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def generate_bootstraps(data, n_bootstraps=100):\n",
|
||||
" data_size = data.shape[0]\n",
|
||||
" for b in range(n_bootstraps):\n",
|
||||
" indicies = np.random.choice(len(data), size=data_size)\n",
|
||||
" yield data.iloc[indicies, :]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_t_stat(data1, data2):\n",
|
||||
" mean1 = np.mean(data1)\n",
|
||||
" mean2 = np.mean(data2)\n",
|
||||
" sem1 = sem(data1)\n",
|
||||
" sem2 = sem(data2)\n",
|
||||
"\n",
|
||||
" sed = sqrt(sem1**2.0 + sem2**2.0)\n",
|
||||
" return (mean1 - mean2) / sed"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def independent_t_test(data, columns, alpha=0.05):\n",
|
||||
" t_stat_sum = 0\n",
|
||||
" for sample in generate_bootstraps(data):\n",
|
||||
" t_stat_sum += get_t_stat(sample[columns[0]], sample[columns[1]])\n",
|
||||
"\n",
|
||||
" data_size = data.shape[0]\n",
|
||||
" t_stat = t_stat_sum / data_size\n",
|
||||
" df = 2 * data_size - 2\n",
|
||||
" cv = t.ppf(1.0 - alpha, df)\n",
|
||||
" p = (1.0 - t.cdf(abs(t_stat), df)) * 2.0\n",
|
||||
" return t_stat, df, cv, p"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def make_decision(data, columns, alpha=0.05):\n",
|
||||
" t_stat, df, cv, p = independent_t_test(data, columns, alpha)\n",
|
||||
" print(f't: {t_stat}, df: {df}, cv: {cv}, p: {p}\\n')\n",
|
||||
" if abs(t_stat) <= cv:\n",
|
||||
"\t print('Accept null hypothesis that the means are equal.')\n",
|
||||
" else:\n",
|
||||
" print('Reject the null hypothesis that the means are equal.')\n",
|
||||
" if p > alpha:\n",
|
||||
" print('Accept null hypothesis that the means are equal.')\n",
|
||||
" else:\n",
|
||||
"\t print('Reject the null hypothesis that the means are equal.')"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"t: 6.903407918031469, df: 998, cv: 1.6463818766348755, p: 9.018563673635072e-12\n",
|
||||
"\n",
|
||||
"Reject the null hypothesis that the means are equal.\n",
|
||||
"Reject the null hypothesis that the means are equal.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dataset = pd.read_csv('experiment_data.csv')\n",
|
||||
"make_decision(dataset, ['Weight', 'Age'])"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"interpreter": {
|
||||
"hash": "11938c6bc6919ae2720b4d5011047913343b08a43b18698fd82dedb0d4417594"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.9.1 64-bit",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
501
experiment_data.csv
Normal file
501
experiment_data.csv
Normal file
@ -0,0 +1,501 @@
|
||||
Gender,Height,Weight,Index,Age
|
||||
Male,174,96,4,42
|
||||
Male,189,87,2,50
|
||||
Female,185,110,4,43
|
||||
Female,195,104,3,48
|
||||
Male,149,61,3,46
|
||||
Male,189,104,3,18
|
||||
Male,147,92,5,57
|
||||
Male,154,111,5,22
|
||||
Male,174,90,3,31
|
||||
Female,169,103,4,21
|
||||
Male,195,81,2,72
|
||||
Female,159,80,4,45
|
||||
Female,192,101,3,51
|
||||
Male,155,51,2,46
|
||||
Male,191,79,2,40
|
||||
Female,153,107,5,22
|
||||
Female,157,110,5,69
|
||||
Male,140,129,5,76
|
||||
Male,144,145,5,21
|
||||
Male,172,139,5,60
|
||||
Male,157,110,5,41
|
||||
Female,153,149,5,73
|
||||
Female,169,97,4,21
|
||||
Male,185,139,5,50
|
||||
Female,172,67,2,49
|
||||
Female,151,64,3,31
|
||||
Male,190,95,3,67
|
||||
Male,187,62,1,27
|
||||
Female,163,159,5,61
|
||||
Male,179,152,5,49
|
||||
Male,153,121,5,22
|
||||
Male,178,52,1,46
|
||||
Female,195,65,1,73
|
||||
Female,160,131,5,22
|
||||
Female,157,153,5,42
|
||||
Female,189,132,4,69
|
||||
Female,197,114,3,71
|
||||
Male,144,80,4,32
|
||||
Female,171,152,5,29
|
||||
Female,185,81,2,36
|
||||
Female,175,120,4,54
|
||||
Female,149,108,5,39
|
||||
Male,157,56,2,23
|
||||
Male,161,118,5,62
|
||||
Female,182,126,4,30
|
||||
Male,185,76,2,31
|
||||
Female,188,122,4,30
|
||||
Male,181,111,4,77
|
||||
Male,161,72,3,39
|
||||
Male,140,152,5,35
|
||||
Female,168,135,5,80
|
||||
Female,176,54,1,47
|
||||
Male,163,110,5,38
|
||||
Male,172,105,4,21
|
||||
Male,196,116,4,39
|
||||
Female,187,89,3,58
|
||||
Male,172,92,4,48
|
||||
Male,178,127,5,23
|
||||
Female,164,70,3,76
|
||||
Male,143,88,5,20
|
||||
Female,191,54,0,80
|
||||
Female,141,143,5,55
|
||||
Male,193,54,0,54
|
||||
Male,190,83,2,80
|
||||
Male,175,135,5,46
|
||||
Female,179,158,5,67
|
||||
Female,172,96,4,53
|
||||
Female,168,59,2,57
|
||||
Female,164,82,4,48
|
||||
Female,194,136,4,32
|
||||
Female,153,51,2,32
|
||||
Male,178,117,4,56
|
||||
Male,141,80,5,43
|
||||
Male,180,75,2,37
|
||||
Female,185,100,3,18
|
||||
Female,197,154,4,72
|
||||
Male,165,104,4,61
|
||||
Female,168,90,4,64
|
||||
Female,176,122,4,69
|
||||
Male,181,51,0,21
|
||||
Male,164,75,3,68
|
||||
Female,166,140,5,39
|
||||
Female,190,105,3,47
|
||||
Male,186,118,4,74
|
||||
Male,168,123,5,62
|
||||
Male,198,50,0,25
|
||||
Female,175,141,5,58
|
||||
Male,145,117,5,49
|
||||
Female,159,104,5,72
|
||||
Female,185,140,5,38
|
||||
Female,178,154,5,66
|
||||
Female,183,96,3,79
|
||||
Female,194,111,3,63
|
||||
Male,177,61,2,37
|
||||
Male,197,119,4,40
|
||||
Female,170,156,5,42
|
||||
Male,142,69,4,54
|
||||
Male,160,139,5,72
|
||||
Male,195,69,1,35
|
||||
Female,190,50,0,46
|
||||
Male,199,156,4,78
|
||||
Male,154,105,5,56
|
||||
Male,161,155,5,79
|
||||
Female,198,145,4,70
|
||||
Female,192,140,4,30
|
||||
Male,195,126,4,42
|
||||
Male,166,160,5,42
|
||||
Male,159,154,5,78
|
||||
Female,181,106,4,28
|
||||
Male,149,66,3,18
|
||||
Female,150,70,4,19
|
||||
Female,146,157,5,22
|
||||
Male,190,135,4,76
|
||||
Female,192,90,2,38
|
||||
Female,177,96,4,72
|
||||
Male,148,60,3,51
|
||||
Female,165,57,2,60
|
||||
Female,146,104,5,57
|
||||
Male,144,108,5,54
|
||||
Female,176,156,5,35
|
||||
Female,168,87,4,35
|
||||
Male,187,122,4,71
|
||||
Male,187,138,4,57
|
||||
Female,184,160,5,56
|
||||
Female,158,149,5,32
|
||||
Male,158,96,4,39
|
||||
Male,194,115,4,56
|
||||
Female,145,79,4,74
|
||||
Male,182,151,5,67
|
||||
Male,154,54,2,68
|
||||
Female,168,139,5,32
|
||||
Female,187,70,2,40
|
||||
Female,158,153,5,68
|
||||
Female,167,110,4,33
|
||||
Female,171,155,5,60
|
||||
Female,183,150,5,40
|
||||
Female,190,156,5,28
|
||||
Male,194,108,3,38
|
||||
Male,171,147,5,58
|
||||
Male,159,124,5,34
|
||||
Female,169,54,2,51
|
||||
Female,167,85,4,69
|
||||
Male,180,149,5,60
|
||||
Male,163,123,5,22
|
||||
Male,140,79,5,74
|
||||
Male,197,125,4,66
|
||||
Male,194,106,3,66
|
||||
Female,140,146,5,18
|
||||
Male,195,98,3,62
|
||||
Female,168,115,3,19
|
||||
Female,196,50,0,20
|
||||
Male,140,52,3,49
|
||||
Female,150,60,3,36
|
||||
Female,168,140,5,57
|
||||
Female,155,111,5,62
|
||||
Female,179,103,4,52
|
||||
Female,182,84,3,73
|
||||
Male,168,160,5,62
|
||||
Female,187,102,3,48
|
||||
Male,181,105,4,72
|
||||
Male,199,99,2,61
|
||||
Female,184,76,2,29
|
||||
Male,192,101,3,57
|
||||
Female,182,143,5,33
|
||||
Female,172,111,4,55
|
||||
Male,181,78,2,72
|
||||
Male,176,109,4,47
|
||||
Female,156,106,5,69
|
||||
Female,151,67,3,24
|
||||
Female,188,80,2,29
|
||||
Male,187,136,4,18
|
||||
Male,174,138,5,45
|
||||
Male,167,151,5,74
|
||||
Female,196,131,4,60
|
||||
Male,197,149,4,27
|
||||
Female,185,119,4,31
|
||||
Female,170,102,4,54
|
||||
Female,181,94,3,59
|
||||
Female,166,126,5,72
|
||||
Male,188,100,3,20
|
||||
Female,162,74,3,25
|
||||
Male,177,117,4,65
|
||||
Male,162,97,4,67
|
||||
Male,180,73,2,34
|
||||
Female,192,108,3,58
|
||||
Male,165,80,3,23
|
||||
Female,167,135,5,19
|
||||
Female,182,84,3,57
|
||||
Female,161,134,5,50
|
||||
Male,158,95,4,35
|
||||
Male,141,85,5,49
|
||||
Male,154,100,5,80
|
||||
Male,165,105,4,31
|
||||
Female,142,137,5,23
|
||||
Male,141,94,5,35
|
||||
Male,145,108,5,42
|
||||
Male,157,74,4,55
|
||||
Female,177,117,4,24
|
||||
Female,166,144,5,73
|
||||
Male,193,151,5,72
|
||||
Male,184,57,1,65
|
||||
Male,179,93,3,31
|
||||
Female,156,89,4,25
|
||||
Male,182,104,4,30
|
||||
Male,145,160,5,60
|
||||
Female,150,87,4,63
|
||||
Male,145,99,5,55
|
||||
Female,196,122,4,46
|
||||
Male,191,96,3,60
|
||||
Female,148,67,4,65
|
||||
Female,150,84,4,45
|
||||
Male,148,155,5,36
|
||||
Female,153,146,5,49
|
||||
Female,196,159,5,20
|
||||
Female,185,52,0,74
|
||||
Female,171,131,5,50
|
||||
Female,143,118,5,41
|
||||
Female,142,86,5,77
|
||||
Female,141,126,5,37
|
||||
Male,159,109,5,74
|
||||
Female,173,82,2,18
|
||||
Male,183,138,5,65
|
||||
Female,152,90,4,24
|
||||
Male,178,140,5,56
|
||||
Male,188,54,0,20
|
||||
Female,155,144,5,58
|
||||
Male,166,70,3,68
|
||||
Male,188,123,4,31
|
||||
Female,171,120,5,51
|
||||
Male,179,130,5,41
|
||||
Female,186,137,4,77
|
||||
Female,153,78,2,51
|
||||
Female,184,86,3,56
|
||||
Female,177,81,3,31
|
||||
Male,145,78,4,39
|
||||
Male,170,81,3,37
|
||||
Male,181,141,5,56
|
||||
Male,165,155,5,18
|
||||
Female,174,65,2,57
|
||||
Female,146,110,5,65
|
||||
Male,178,85,3,38
|
||||
Male,166,61,2,35
|
||||
Male,191,62,1,38
|
||||
Female,177,155,5,62
|
||||
Female,183,50,0,27
|
||||
Male,151,114,5,55
|
||||
Male,182,98,3,30
|
||||
Female,142,159,5,61
|
||||
Female,188,90,3,19
|
||||
Male,161,89,4,35
|
||||
Male,153,70,3,70
|
||||
Male,140,143,5,78
|
||||
Male,169,141,5,48
|
||||
Female,162,159,5,41
|
||||
Male,183,147,5,37
|
||||
Female,162,58,2,77
|
||||
Female,172,109,4,28
|
||||
Female,150,119,5,49
|
||||
Female,169,145,5,74
|
||||
Female,184,132,4,23
|
||||
Male,159,104,5,44
|
||||
Male,163,131,5,22
|
||||
Male,156,137,5,45
|
||||
Female,157,52,2,79
|
||||
Male,147,84,4,77
|
||||
Male,141,86,5,32
|
||||
Male,173,139,5,59
|
||||
Male,154,145,5,75
|
||||
Male,168,148,5,21
|
||||
Male,168,50,1,71
|
||||
Male,145,130,5,24
|
||||
Male,152,103,5,36
|
||||
Female,187,121,4,25
|
||||
Female,163,57,0,30
|
||||
Male,178,83,3,24
|
||||
Female,187,94,3,35
|
||||
Female,179,114,4,25
|
||||
Male,190,80,2,45
|
||||
Male,172,75,3,49
|
||||
Male,188,57,1,25
|
||||
Male,193,65,1,66
|
||||
Female,147,126,5,40
|
||||
Female,147,94,5,72
|
||||
Male,166,107,4,27
|
||||
Female,192,139,4,63
|
||||
Male,181,139,4,41
|
||||
Male,150,74,4,50
|
||||
Male,178,160,5,48
|
||||
Female,156,52,2,80
|
||||
Male,149,100,5,22
|
||||
Male,156,74,4,64
|
||||
Male,183,105,3,30
|
||||
Female,162,68,3,43
|
||||
Female,165,83,4,27
|
||||
Female,168,143,5,53
|
||||
Male,160,156,5,36
|
||||
Female,169,88,2,75
|
||||
Female,140,76,4,23
|
||||
Female,187,92,3,28
|
||||
Male,151,82,4,34
|
||||
Female,186,140,5,79
|
||||
Male,182,108,4,48
|
||||
Male,188,81,2,25
|
||||
Male,179,110,4,45
|
||||
Female,156,126,5,59
|
||||
Male,188,114,4,19
|
||||
Male,183,153,5,72
|
||||
Male,144,88,5,53
|
||||
Male,196,69,1,40
|
||||
Male,171,141,5,26
|
||||
Male,171,147,5,51
|
||||
Female,180,156,5,68
|
||||
Male,191,146,5,65
|
||||
Female,179,67,2,77
|
||||
Female,180,60,2,71
|
||||
Female,154,132,5,19
|
||||
Male,188,99,3,54
|
||||
Male,142,135,5,74
|
||||
Male,170,95,4,55
|
||||
Male,152,141,5,66
|
||||
Female,190,118,4,37
|
||||
Female,181,111,4,73
|
||||
Male,153,104,5,26
|
||||
Male,187,140,5,61
|
||||
Female,144,66,4,20
|
||||
Female,148,54,2,48
|
||||
Female,199,92,2,49
|
||||
Female,167,85,4,73
|
||||
Female,164,71,3,19
|
||||
Female,185,102,3,65
|
||||
Female,164,160,5,77
|
||||
Male,142,71,4,50
|
||||
Male,165,68,2,59
|
||||
Female,172,62,2,42
|
||||
Female,157,56,2,18
|
||||
Male,155,57,2,37
|
||||
Female,167,153,5,79
|
||||
Female,164,126,5,80
|
||||
Female,189,125,4,39
|
||||
Female,161,145,5,32
|
||||
Female,155,71,3,56
|
||||
Female,171,118,4,74
|
||||
Female,154,92,4,34
|
||||
Male,179,83,3,53
|
||||
Male,170,115,4,73
|
||||
Female,184,106,4,54
|
||||
Female,191,68,2,60
|
||||
Male,162,58,2,22
|
||||
Male,178,138,5,61
|
||||
Female,157,60,2,35
|
||||
Male,184,83,2,59
|
||||
Male,197,88,2,68
|
||||
Female,160,51,2,34
|
||||
Male,184,153,5,65
|
||||
Male,190,50,0,18
|
||||
Male,174,90,3,49
|
||||
Female,189,124,4,80
|
||||
Female,186,143,5,55
|
||||
Female,180,58,1,41
|
||||
Female,186,148,4,42
|
||||
Female,193,61,1,21
|
||||
Male,161,103,4,33
|
||||
Female,151,158,5,50
|
||||
Female,195,147,4,42
|
||||
Female,184,152,5,80
|
||||
Male,141,80,5,69
|
||||
Female,185,94,3,47
|
||||
Female,186,127,4,37
|
||||
Male,142,131,5,68
|
||||
Female,147,67,4,36
|
||||
Male,151,62,3,72
|
||||
Female,160,124,5,67
|
||||
Male,185,60,1,79
|
||||
Female,163,63,2,42
|
||||
Male,174,95,4,29
|
||||
Female,150,144,5,46
|
||||
Male,142,91,5,61
|
||||
Male,178,142,5,20
|
||||
Female,154,96,5,69
|
||||
Male,176,87,3,75
|
||||
Male,159,120,5,22
|
||||
Male,191,62,1,32
|
||||
Male,177,117,4,66
|
||||
Male,151,154,5,62
|
||||
Female,182,149,5,56
|
||||
Female,197,72,2,57
|
||||
Male,146,138,5,25
|
||||
Female,160,83,4,65
|
||||
Female,157,66,3,44
|
||||
Female,150,50,2,60
|
||||
Female,167,58,2,51
|
||||
Female,180,70,2,29
|
||||
Female,183,76,2,79
|
||||
Female,183,87,3,58
|
||||
Female,152,154,5,21
|
||||
Female,164,71,3,74
|
||||
Male,187,96,3,69
|
||||
Male,169,136,5,44
|
||||
Female,149,61,3,75
|
||||
Male,163,137,5,32
|
||||
Female,195,104,3,76
|
||||
Male,174,107,4,65
|
||||
Male,182,70,2,60
|
||||
Male,169,110,4,53
|
||||
Male,193,130,4,63
|
||||
Male,148,141,5,59
|
||||
Male,186,68,2,48
|
||||
Male,165,143,5,59
|
||||
Female,146,123,5,53
|
||||
Female,166,133,5,26
|
||||
Male,179,56,1,45
|
||||
Female,177,101,4,36
|
||||
Male,181,154,5,66
|
||||
Female,161,154,5,65
|
||||
Female,157,103,5,25
|
||||
Female,169,98,4,80
|
||||
Female,152,114,5,30
|
||||
Female,162,64,2,67
|
||||
Male,162,130,5,57
|
||||
Female,177,61,2,48
|
||||
Female,195,61,1,56
|
||||
Male,140,146,5,69
|
||||
Female,186,146,5,79
|
||||
Female,178,107,4,51
|
||||
Male,174,54,1,18
|
||||
Female,180,59,1,26
|
||||
Male,188,141,4,51
|
||||
Female,187,130,4,18
|
||||
Female,153,77,4,75
|
||||
Female,165,95,4,51
|
||||
Female,178,79,2,79
|
||||
Female,163,154,5,28
|
||||
Female,150,97,5,77
|
||||
Male,179,127,4,20
|
||||
Male,165,62,2,58
|
||||
Male,168,158,5,67
|
||||
Female,153,133,5,28
|
||||
Male,184,157,5,24
|
||||
Male,188,65,1,64
|
||||
Female,166,153,5,33
|
||||
Female,172,116,4,22
|
||||
Male,182,73,2,74
|
||||
Male,143,149,5,54
|
||||
Male,152,146,5,36
|
||||
Female,186,128,4,26
|
||||
Male,159,140,5,70
|
||||
Male,146,70,4,54
|
||||
Female,176,121,4,35
|
||||
Female,146,101,5,49
|
||||
Male,159,145,5,31
|
||||
Male,162,157,5,30
|
||||
Female,172,90,4,78
|
||||
Female,169,121,5,54
|
||||
Male,182,50,0,36
|
||||
Female,183,79,2,41
|
||||
Male,176,77,2,60
|
||||
Female,188,128,4,53
|
||||
Female,175,83,2,41
|
||||
Male,154,81,4,28
|
||||
Female,184,147,5,43
|
||||
Male,179,123,4,21
|
||||
Male,152,132,5,49
|
||||
Male,179,56,1,49
|
||||
Female,145,141,5,77
|
||||
Female,181,80,2,20
|
||||
Male,158,127,5,30
|
||||
Female,188,99,3,76
|
||||
Male,145,142,5,61
|
||||
Male,161,115,5,39
|
||||
Male,198,109,3,69
|
||||
Male,147,142,5,47
|
||||
Male,154,112,5,21
|
||||
Female,178,65,2,70
|
||||
Male,195,153,5,43
|
||||
Female,167,79,3,54
|
||||
Male,183,131,4,73
|
||||
Female,164,142,5,46
|
||||
Male,167,64,2,33
|
||||
Female,151,55,2,36
|
||||
Female,147,107,5,68
|
||||
Female,155,115,5,47
|
||||
Female,172,108,4,68
|
||||
Female,142,86,5,41
|
||||
Male,146,85,4,38
|
||||
Female,188,115,4,25
|
||||
Male,173,111,4,21
|
||||
Female,160,109,5,30
|
||||
Male,187,80,2,75
|
||||
Male,198,136,4,78
|
||||
Female,179,150,5,36
|
||||
Female,164,59,2,62
|
||||
Female,146,147,5,37
|
||||
Female,198,50,0,56
|
||||
Female,170,53,1,59
|
||||
Male,152,98,5,53
|
||||
Female,150,153,5,59
|
||||
Female,184,121,4,37
|
||||
Female,141,136,5,52
|
||||
Male,150,95,5,28
|
||||
Male,173,131,5,66
|
|
Loading…
Reference in New Issue
Block a user