diff --git a/bootstrap-t.ipynb b/bootstrap-t.ipynb
index cf8ea0a..08cb6c3 100644
--- a/bootstrap-t.ipynb
+++ b/bootstrap-t.ipynb
@@ -55,7 +55,7 @@
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 46,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -72,7 +72,7 @@
},
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
@@ -81,7 +81,7 @@
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
@@ -92,7 +92,7 @@
},
{
"cell_type": "code",
- "execution_count": 43,
+ "execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
@@ -113,7 +113,7 @@
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": 50,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -135,7 +135,7 @@
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
@@ -153,7 +153,7 @@
},
{
"cell_type": "code",
- "execution_count": 46,
+ "execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
@@ -171,7 +171,7 @@
},
{
"cell_type": "code",
- "execution_count": 47,
+ "execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
@@ -199,7 +199,7 @@
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
@@ -229,7 +229,7 @@
},
{
"cell_type": "code",
- "execution_count": 49,
+ "execution_count": 55,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -246,7 +246,7 @@
},
{
"cell_type": "code",
- "execution_count": 50,
+ "execution_count": 56,
"metadata": {
"collapsed": false,
"pycharm": {
@@ -269,7 +269,7 @@
},
{
"cell_type": "code",
- "execution_count": 51,
+ "execution_count": 57,
"metadata": {
"collapsed": false,
"pycharm": {
@@ -291,7 +291,7 @@
},
{
"cell_type": "code",
- "execution_count": 52,
+ "execution_count": 58,
"metadata": {
"collapsed": false,
"pycharm": {
@@ -313,7 +313,7 @@
},
{
"cell_type": "code",
- "execution_count": 53,
+ "execution_count": 59,
"metadata": {
"collapsed": false,
"pycharm": {
@@ -346,7 +346,7 @@
},
{
"cell_type": "code",
- "execution_count": 54,
+ "execution_count": 60,
"metadata": {
"collapsed": false,
"pycharm": {
@@ -367,6 +367,14 @@
"0 76.5602\n",
"dtype: float64\n"
]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\program files\\python39\\lib\\site-packages\\numpy\\core\\fromnumeric.py:3472: FutureWarning: In a future version, DataFrame.mean(axis=None) will return a scalar mean over the entire DataFrame. To retain the old behavior, use 'frame.mean(axis=0)' or just 'frame.mean()'\n",
+ " return mean(axis=axis, dtype=dtype, out=out, **kwargs)\n"
+ ]
}
],
"source": [
@@ -383,7 +391,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 60,
"metadata": {},
"outputs": [],
"source": []
@@ -410,7 +418,7 @@
},
{
"cell_type": "code",
- "execution_count": 55,
+ "execution_count": 61,
"metadata": {},
"outputs": [
{
@@ -445,7 +453,7 @@
},
{
"cell_type": "code",
- "execution_count": 56,
+ "execution_count": 62,
"metadata": {
"collapsed": false,
"pycharm": {
@@ -465,7 +473,7 @@
"p: 0.5\n",
"Wartość statystyki testowej z próby: [19.1207964]\n",
"Wartości statystyk z prób boostrapowych:\n",
- "[17.41702865], [19.17874674], [20.59090525], [17.666445], [19.3593138], ... (i 95 pozostałych)\n",
+ "[18.3771515], [18.01787771], [18.0688161], [17.02918795], [17.03895917], ... (i 995 pozostałych)\n",
"\n",
"\n",
"\n"
@@ -473,11 +481,8 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWwElEQVR4nO3debRlZX3m8e8joEYholIiAmUZm2BwgGCJsRUtZybHOEDHBKNtObZCx1YcOtr2sHCllcSQiERo1CASBwwKKJgWUSNCFRaTQEPTGAsQEJRBjaTw13+cXeF4ec+tU5d7zr637vez1llnD+/e+7fvXes+d0/vTlUhSdJM9+m7AEnSwmRASJKaDAhJUpMBIUlqMiAkSU1b913AfNphhx1qxYoVfZehxeSKKwbfu+/ebx1ST9auXfvjqlrWmrdFBcSKFStYs2ZN32VoMVm1avB99tl9ViH1JskPRs3zFJMkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKlpi3qSWovDiiNO623b1xx5YG/blhYbjyAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpKaJddaX5HjgIODGqnpcN+1kYPeuyfbAT6tqr8ay1wC3A3cBG6pq5aTqlCS1TbI31xOAo4FPbpxQVa/cOJzkQ8Ctsyz/zKr68cSqkyTNamIBUVXnJFnRmpckwCuAZ01q+5Kke6evaxD7AjdU1ZUj5hdwZpK1SVbPtqIkq5OsSbLmpptumvdCJWmp6isgDgFOmmX+06pqb2B/4M1Jnj6qYVUdW1Urq2rlsmXL5rtOSVqyph4QSbYGXgqcPKpNVV3bfd8InALsM53qJEkb9XEE8Rzg8qpa35qZ5IFJtts4DDwPuGSK9UmSmGBAJDkJ+A6we5L1SV7bzTqYGaeXkjwiyend6I7At5JcCJwHnFZVX5lUnZKktknexXTIiOmvbky7DjigG74a2HNSdUmSxuOT1JKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUNMk3ykkLzoojTvu18c9cfTMAB8+YPt+uOfLAia5fmgSPICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUtMk30l9fJIbk1wyNO39Sa5Nsq77HDBi2f2SXJHkqiRHTKpGSdJokzyCOAHYrzH9qKraq/ucPnNmkq2AvwL2B/YADkmyxwTrlCQ1TCwgquoc4JY5LLoPcFVVXV1VdwKfAV40r8VJkjapj6423pLkj4A1wJ9U1U9mzN8Z+OHQ+HrgyaNWlmQ1sBpg+fLl81yqtLjN7FpkmuxeZPGb9kXqjwKPBvYCrgc+dG9XWFXHVtXKqlq5bNmye7s6SVJnqgFRVTdU1V1V9SvgbxicTprpWmDXofFdummSpCmaakAk2Wlo9CXAJY1m5wO7JXlUkvsCBwOnTqM+SdLdJnYNIslJwCpghyTrgfcBq5LsBRRwDfD6ru0jgI9X1QFVtSHJW4CvAlsBx1fVpZOqU5LUNrGAqKpDGpOPG9H2OuCAofHTgXvcAitJmh6fpJYkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqWliLwzSwrfiiNP6LkHSAuYRhCSpaWIBkeT4JDcmuWRo2p8luTzJRUlOSbL9iGWvSXJxknVJ1kyqRknSaJM8gjgB2G/GtLOAx1XVE4D/A7xrluWfWVV7VdXKCdUnSZrFxAKiqs4Bbpkx7cyq2tCNngvsMqntS5LunT6vQbwGOGPEvALOTLI2yeop1iRJ6vRyF1OS9wAbgBNHNHlaVV2b5GHAWUku745IWutaDawGWL58+UTqlaSlaOpHEEleDRwE/EFVVatNVV3bfd8InALsM2p9VXVsVa2sqpXLli2bQMWStDRNNSCS7Ae8A3hhVf18RJsHJtlu4zDwPOCSVltJ0uRM8jbXk4DvALsnWZ/ktcDRwHYMThutS3JM1/YRSU7vFt0R+FaSC4HzgNOq6iuTqlOS1DbWNYgkj6+qizdnxVV1SGPycSPaXgcc0A1fDey5OduSJM2/cY8g/jrJeUnelORBE61IkrQgjBUQVbUv8AfArsDaJJ9O8tyJViZJ6tXY1yCq6krgvcA7gWcAH+m6zXjppIqTJPVnrIBI8oQkRwGXAc8CXlBVv9MNHzXB+iRJPRn3Qbm/BD4OvLuqfrFxYlVdl+S9E6lMktSrcQPiQOAXVXUXQJL7APevqp9X1acmVp0kqTfjXoP4GvAbQ+MP6KZJkrZQ4wbE/avqjo0j3fADJlOSJGkhGDcgfpZk740jSZ4I/GKW9pKkRW7caxCHAZ9Nch0Q4OHAKydVlCSpf2MFRFWdn+QxwO7dpCuq6l8mV5YkqW+b8z6IJwErumX2TkJVfXIiVS0hK444re8SJKlp3M76PgU8GlgH3NVNLsCAkKQt1LhHECuBPUa94EeStOUZ9y6mSxhcmJYkLRHjHkHsAHw/yXnALzdOrKoXTqQqSVLvxg2I90+yCEnSwjPuba7fSPJIYLeq+lqSBwBbTbY0SVKfxu3u+3XA54CPdZN2Br44oZokSQvAuBep3ww8FbgN/vXlQQ/b1EJJjk9yY5JLhqY9JMlZSa7svh88YtlDuzZXJjl0zDolSfNk3ID4ZVXduXEkydYMnoPYlBOA/WZMOwL4h6raDfiHbvzXJHkI8D7gycA+wPtGBYkkaTLGDYhvJHk38Bvdu6g/C3xpUwtV1TnALTMmvwj4RDf8CeDFjUWfD5xVVbdU1U+As7hn0EiSJmjcu5iOAF4LXAy8HjidwRvm5mLHqrq+G/4RsGOjzc7AD4fG13fT7iHJamA1wPLly+dYkjRZdqmixWjcu5h+BfxN95k3VVVJ7tXT2VV1LHAswMqVK33SW5Lmybh9Mf0/Gtccquq35rDNG5LsVFXXJ9kJuLHR5lpg1dD4LsDZc9iWJGmONqcvpo3uD7wceMgct3kqcChwZPf99402XwX+x9CF6ecB75rj9iRJczDWReqqunnoc21V/Tlw4KaWS3IS8B1g9yTrk7yWQTA8N8mVwHO6cZKsTPLxbnu3AP8VOL/7fKCbJkmaknFPMe09NHofBkcUm1y2qg4ZMevZjbZrgH8/NH48cPw49UmS5t+4p5g+NDS8AbgGeMW8VyNJWjDGvYvpmZMuRJK0sIx7iuk/zja/qj48P+VIkhaKzbmL6UkM7kACeAFwHnDlJIqSJPVv3IDYBdi7qm4HSPJ+4LSqetWkCpMk9Wvcvph2BO4cGr+TdhcZkqQtxLhHEJ8EzktySjf+Yu7ucE+StAUa9y6m/57kDGDfbtIfV9X3JleWJKlv455iAngAcFtV/QWwPsmjJlSTJGkBGPeVo+8D3snd/SFtA/ztpIqSJPVv3COIlwAvBH4GUFXXAdtNqihJUv/GDYg7q6rouvxO8sDJlSRJWgjGDYi/S/IxYPskrwO+xjy/PEiStLBs8i6mJAFOBh4D3AbsDvxpVZ014dokST0ap8vuSnJ6VT0eMBQkaYkY9xTTBUmeNNFKJEkLyrhPUj8ZeFWSaxjcyRQGBxdPmFRhkqR+zRoQSZZX1T8Bz59SPZKkBWJTp5i+CFBVPwA+XFU/GP7MZYNJdk+ybuhzW5LDZrRZleTWoTZ/OpdtSZLmblOnmDI0/FvzscGqugLYCyDJVsC1wCmNpt+sqoPmY5uSpM23qSOIGjE8X54N/N+5Ho1IkiZnUwGxZ3cK6HbgCd3wbUluT3LbPGz/YOCkEfOekuTCJGckeeyoFSRZnWRNkjU33XTTPJQkSYJNnGKqqq0mteEk92XQv9O7GrMvAB5ZVXckOYDBtZDdRtR4LHAswMqVKydxlCNJS9LmdPc93/YHLqiqG2bOqKrbquqObvh0YJskO0y7QElayvoMiEMYcXopycO7Lj5Isg+DOm+eYm2StOSN+6DcvOp6g30u8PqhaW8AqKpjgJcBb0yyAfgFcHDXm6wkaUp6CYiq+hnw0BnTjhkaPho4etp1SZLu1ucpJknSAmZASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmnrpamMhWnHEaX2XIEkLikcQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpqbeASHJNkouTrEuypjE/ST6S5KokFyXZu486JWmp6vtBuWdW1Y9HzNsf2K37PBn4aPctSZqChXyK6UXAJ2vgXGD7JDv1XZQkLRV9BkQBZyZZm2R1Y/7OwA+Hxtd3035NktVJ1iRZc9NNN02oVElaevoMiKdV1d4MTiW9OcnT57KSqjq2qlZW1cply5bNb4WStIT1FhBVdW33fSNwCrDPjCbXArsOje/STZMkTUEvAZHkgUm22zgMPA+4ZEazU4E/6u5m+j3g1qq6fsqlStKS1dddTDsCpyTZWMOnq+orSd4AUFXHAKcDBwBXAT8H/rinWiVpSeolIKrqamDPxvRjhoYLePM065Ik3W0h3+YqSeqRASFJajIgJElNBoQkqcmAkCQ19d1ZnyRtMVYccVov273myAMnsl6PICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpya42JE1EX91OaP54BCFJapp6QCTZNcnXk3w/yaVJ3tZosyrJrUnWdZ8/nXadkrTU9XGKaQPwJ1V1QZLtgLVJzqqq789o982qOqiH+iRJ9HAEUVXXV9UF3fDtwGXAztOuQ5I0u16vQSRZAfwu8N3G7KckuTDJGUkeO93KJEm93cWUZFvg88BhVXXbjNkXAI+sqjuSHAB8EdhtxHpWA6sBli9fPrmCJWmJ6eUIIsk2DMLhxKr6wsz5VXVbVd3RDZ8ObJNkh9a6qurYqlpZVSuXLVs20bolaSnp4y6mAMcBl1XVh0e0eXjXjiT7MKjz5ulVKUnq4xTTU4E/BC5Osq6b9m5gOUBVHQO8DHhjkg3AL4CDq6p6qFWSlqypB0RVfQvIJtocDRw9nYokSS0+SS1JajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpqZeASLJfkiuSXJXkiMb8+yU5uZv/3SQreihTkpa0qQdEkq2AvwL2B/YADkmyx4xmrwV+UlX/BjgK+OB0q5Qk9XEEsQ9wVVVdXVV3Ap8BXjSjzYuAT3TDnwOenSRTrFGSlryte9jmzsAPh8bXA08e1aaqNiS5FXgo8OOZK0uyGljdjd6R5Ip5r/jX7dCqYwux5PbtKRsHPnjQVIuZZ0vu97aFmLd9y707x/LIUTP6CIh5VVXHAsdOa3tJ1lTVymltb5rct8XJfVucFsO+9XGK6Vpg16HxXbppzTZJtgYeBNw8leokSUA/AXE+sFuSRyW5L3AwcOqMNqcCh3bDLwP+d1XVFGuUpCVv6qeYumsKbwG+CmwFHF9Vlyb5ALCmqk4FjgM+leQq4BYGIbJQTO10Vg/ct8XJfVucFvy+xX/MJUktPkktSWoyICRJTQbELJIcn+TGJJcMTTs5ybruc02SdT2WOGcj9m2vJOd2+7YmyT591jhXI/ZtzyTfSXJxki8l+c0+a5yLJLsm+XqS7ye5NMnbuukPSXJWkiu77wf3XevmmmXfXt6N/yrJgr4ldJRZ9u3Pklye5KIkpyTZvudS78FrELNI8nTgDuCTVfW4xvwPAbdW1QemXty91Nq3JGcCR1XVGUkOAN5RVat6LHNORuzb+cDbq+obSV4DPKqq/nOfdW6uJDsBO1XVBUm2A9YCLwZeDdxSVUd2fZs9uKre2V+lm2+WfSvgV8DHGPz+1vRX5dzMsm+7MLhDc0MyeNRtof3ePIKYRVWdw+Auqnvouv54BXDSVIuaJyP2rYCN/1k/CLhuqkXNkxH79tvAOd3wWcDvT7WoeVBV11fVBd3w7cBlDHodGO6a5hMM/vgsKqP2raouq6pJ944wUbPs25lVtaFrdi6DwFhQFv2T1D3aF7ihqq7su5B5dBjw1ST/k8E/D/+233Lm1aUM/pB+EXg5v/6w5qLT9XD8u8B3gR2r6vpu1o+AHfuqaz7M2Lctyiz79hrg5KkXtAkeQczdISzSo4dZvBE4vKp2BQ5n8DzKluI1wJuSrAW2A+7suZ45S7It8HngsKq6bXhe90Dpoj1vPNu+LXaj9i3Je4ANwIl91TaKRxBz0HX/8VLgiX3XMs8OBd7WDX8W+HiPtcyrqroceB5Akt8GDuy3orlJsg2DPzInVtUXusk3JNmpqq7vznff2F+Fczdi37YIo/YtyauBg4BnL8TeIjyCmJvnAJdX1fq+C5ln1wHP6IafBWwxp8+SPKz7vg/wXuCYfivafN11r+OAy6rqw0OzhrumORT4+2nXdm/Nsm+L3qh9S7If8A7ghVX1877qm413Mc0iyUnAKgbd8t4AvK+qjktyAnBuVS26PzIbtfYNuAL4CwZHlv8MvKmq1vZV41yN2LdtgTd3Tb4AvGsh/sc2myRPA74JXMzgzh6AdzM4n/13wHLgB8Arqqp5c8VCNcu+3Q/4S2AZ8FNgXVU9v48a52qWffsIg/3b2BHpuVX1hulXOJoBIUlq8hSTJKnJgJAkNRkQkqQmA0KS1GRASJKaDAgtKkkeOtSb7o+SXDs0ft8xll+VZOwuRJKsSPLvNrddkpVJPjJf7e+tJGcv1t5Q1R8DQotKVd1cVXtV1V4MHnY7auN4VY3TfcYqNq+PqRXAJgNiZruqWlNVb53H9tLUGRBa9JI8Mck3kqxN8tWuuwmSvLXrg/+iJJ/pOkp7A3B4d8Sx74z1PGPoaOR7XdfMRwL7dtMO7/7z/2aSC7rPxrCZ2W5Vki9vxnqH22+b5H9l8O6Ki5L8/ow690vy2aHx4WU/msG7PC5N8l9G/LzuGBp+WffgJ0mWJfl8kvO7z1Pn+jvRFqKq/PhZlB/g/cB/Av4RWNZNeyVwfDd8HXC/bnj7oWXePmJ9XwKe2g1vy+CJ8lXAl4faPAC4fze8G7CmG57Z7l/Hx1zvcPsPAn8+NO/BM+rcGvgn4IHd+EeBV3XDD+m+twLOBp7QjZ8NrOyG7xha18uAE7rhTwNP64aXM+gaovffs5/+PnbWp8XufsDjgLMGXd6wFbCx6+uLgBOTfJFBN9+b8m3gw0lOBL5QVeu7dQ7bBjg6yV7AXQzeMzEf6x32HODgjSNV9ZPhmTV4wcxXgBck+RyDjgff0c1+RZLVDEJkJ2APBj+HcTwH2GOott9Msm1V3THLMtqCGRBa7AJcWlVPacw7EHg68ALgPUkeP9uKavBGttOAA4BvJ2n1+XM4g/6d9mRwivafN1XgmOvdXJ8B3sLgxUhrqur2JI8C3g48qap+0p06un+rpKHh4fn3AX6vqja5T1oavAahxe6XwLIkT4FBt8pJHtv12rprVX0deCeDN+RtC9zO4H0Q95Dk0VV1cVV9EDgfeEyj/YOA66vqV8AfMjhiYR7WO+ws7u5YkLTfMf0NYG/gdQzCAgZvA/wZcGuSHYH9R6z/hiS/0/2MXjI0/UzgPwxtd68Ry2uJMCC02P2KwXn0Dya5EFjH4C6lrYC/TXIx8D3gI1X1UwbXA17SukgNHJbkkiQXAf8CnMHg9MxdSS5Mcjjw18Ch3bYew+APMo12m7veYf8NeHC3zIXAM2fudFXdBXyZQQh8uZt2YbevlzO4nvDtET+zI7pl/pG7T8cBvBVY2V0Y/z6DC/pawuzNVZLU5BGEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlq+v/Aa8GYN/SqPQAAAABJRU5ErkJggg==",
- "image/svg+xml": "\n\n\n",
- "text/plain": [
- "