diff --git a/bootstrap-t.ipynb b/bootstrap-t.ipynb index cf8ea0a..08cb6c3 100644 --- a/bootstrap-t.ipynb +++ b/bootstrap-t.ipynb @@ -55,7 +55,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 46, "metadata": { "pycharm": { "name": "#%%\n" @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +81,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ @@ -92,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -113,7 +113,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 50, "metadata": { "pycharm": { "name": "#%%\n" @@ -135,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -153,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 52, "metadata": {}, "outputs": [], "source": [ @@ -171,7 +171,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 53, "metadata": {}, "outputs": [], "source": [ @@ -199,7 +199,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ @@ -229,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 55, "metadata": { "pycharm": { "name": "#%%\n" @@ -246,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 56, "metadata": { "collapsed": false, "pycharm": { @@ -269,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 57, "metadata": { "collapsed": false, "pycharm": { @@ -291,7 +291,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 58, "metadata": { "collapsed": false, "pycharm": { @@ -313,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 59, "metadata": { "collapsed": false, "pycharm": { @@ -346,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 60, "metadata": { "collapsed": false, "pycharm": { @@ -367,6 +367,14 @@ "0 76.5602\n", "dtype: float64\n" ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\program files\\python39\\lib\\site-packages\\numpy\\core\\fromnumeric.py:3472: FutureWarning: In a future version, DataFrame.mean(axis=None) will return a scalar mean over the entire DataFrame. To retain the old behavior, use 'frame.mean(axis=0)' or just 'frame.mean()'\n", + " return mean(axis=axis, dtype=dtype, out=out, **kwargs)\n" + ] } ], "source": [ @@ -383,7 +391,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [] @@ -410,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -445,7 +453,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 62, "metadata": { "collapsed": false, "pycharm": { @@ -465,7 +473,7 @@ "p: 0.5\n", "Wartość statystyki testowej z próby: [19.1207964]\n", "Wartości statystyk z prób boostrapowych:\n", - "[17.41702865], [19.17874674], [20.59090525], [17.666445], [19.3593138], ... (i 95 pozostałych)\n", + "[18.3771515], [18.01787771], [18.0688161], [17.02918795], [17.03895917], ... (i 995 pozostałych)\n", "\n", "\n", "\n" @@ -473,11 +481,8 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWwElEQVR4nO3debRlZX3m8e8joEYholIiAmUZm2BwgGCJsRUtZybHOEDHBKNtObZCx1YcOtr2sHCllcSQiERo1CASBwwKKJgWUSNCFRaTQEPTGAsQEJRBjaTw13+cXeF4ec+tU5d7zr637vez1llnD+/e+7fvXes+d0/vTlUhSdJM9+m7AEnSwmRASJKaDAhJUpMBIUlqMiAkSU1b913AfNphhx1qxYoVfZehxeSKKwbfu+/ebx1ST9auXfvjqlrWmrdFBcSKFStYs2ZN32VoMVm1avB99tl9ViH1JskPRs3zFJMkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKlpi3qSWovDiiNO623b1xx5YG/blhYbjyAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpKaJddaX5HjgIODGqnpcN+1kYPeuyfbAT6tqr8ay1wC3A3cBG6pq5aTqlCS1TbI31xOAo4FPbpxQVa/cOJzkQ8Ctsyz/zKr68cSqkyTNamIBUVXnJFnRmpckwCuAZ01q+5Kke6evaxD7AjdU1ZUj5hdwZpK1SVbPtqIkq5OsSbLmpptumvdCJWmp6isgDgFOmmX+06pqb2B/4M1Jnj6qYVUdW1Urq2rlsmXL5rtOSVqyph4QSbYGXgqcPKpNVV3bfd8InALsM53qJEkb9XEE8Rzg8qpa35qZ5IFJtts4DDwPuGSK9UmSmGBAJDkJ+A6we5L1SV7bzTqYGaeXkjwiyend6I7At5JcCJwHnFZVX5lUnZKktknexXTIiOmvbky7DjigG74a2HNSdUmSxuOT1JKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUNMk3ykkLzoojTvu18c9cfTMAB8+YPt+uOfLAia5fmgSPICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUtMk30l9fJIbk1wyNO39Sa5Nsq77HDBi2f2SXJHkqiRHTKpGSdJokzyCOAHYrzH9qKraq/ucPnNmkq2AvwL2B/YADkmyxwTrlCQ1TCwgquoc4JY5LLoPcFVVXV1VdwKfAV40r8VJkjapj6423pLkj4A1wJ9U1U9mzN8Z+OHQ+HrgyaNWlmQ1sBpg+fLl81yqtLjN7FpkmuxeZPGb9kXqjwKPBvYCrgc+dG9XWFXHVtXKqlq5bNmye7s6SVJnqgFRVTdU1V1V9SvgbxicTprpWmDXofFdummSpCmaakAk2Wlo9CXAJY1m5wO7JXlUkvsCBwOnTqM+SdLdJnYNIslJwCpghyTrgfcBq5LsBRRwDfD6ru0jgI9X1QFVtSHJW4CvAlsBx1fVpZOqU5LUNrGAqKpDGpOPG9H2OuCAofHTgXvcAitJmh6fpJYkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqWliLwzSwrfiiNP6LkHSAuYRhCSpaWIBkeT4JDcmuWRo2p8luTzJRUlOSbL9iGWvSXJxknVJ1kyqRknSaJM8gjgB2G/GtLOAx1XVE4D/A7xrluWfWVV7VdXKCdUnSZrFxAKiqs4Bbpkx7cyq2tCNngvsMqntS5LunT6vQbwGOGPEvALOTLI2yeop1iRJ6vRyF1OS9wAbgBNHNHlaVV2b5GHAWUku745IWutaDawGWL58+UTqlaSlaOpHEEleDRwE/EFVVatNVV3bfd8InALsM2p9VXVsVa2sqpXLli2bQMWStDRNNSCS7Ae8A3hhVf18RJsHJtlu4zDwPOCSVltJ0uRM8jbXk4DvALsnWZ/ktcDRwHYMThutS3JM1/YRSU7vFt0R+FaSC4HzgNOq6iuTqlOS1DbWNYgkj6+qizdnxVV1SGPycSPaXgcc0A1fDey5OduSJM2/cY8g/jrJeUnelORBE61IkrQgjBUQVbUv8AfArsDaJJ9O8tyJViZJ6tXY1yCq6krgvcA7gWcAH+m6zXjppIqTJPVnrIBI8oQkRwGXAc8CXlBVv9MNHzXB+iRJPRn3Qbm/BD4OvLuqfrFxYlVdl+S9E6lMktSrcQPiQOAXVXUXQJL7APevqp9X1acmVp0kqTfjXoP4GvAbQ+MP6KZJkrZQ4wbE/avqjo0j3fADJlOSJGkhGDcgfpZk740jSZ4I/GKW9pKkRW7caxCHAZ9Nch0Q4OHAKydVlCSpf2MFRFWdn+QxwO7dpCuq6l8mV5YkqW+b8z6IJwErumX2TkJVfXIiVS0hK444re8SJKlp3M76PgU8GlgH3NVNLsCAkKQt1LhHECuBPUa94EeStOUZ9y6mSxhcmJYkLRHjHkHsAHw/yXnALzdOrKoXTqQqSVLvxg2I90+yCEnSwjPuba7fSPJIYLeq+lqSBwBbTbY0SVKfxu3u+3XA54CPdZN2Br44oZokSQvAuBep3ww8FbgN/vXlQQ/b1EJJjk9yY5JLhqY9JMlZSa7svh88YtlDuzZXJjl0zDolSfNk3ID4ZVXduXEkydYMnoPYlBOA/WZMOwL4h6raDfiHbvzXJHkI8D7gycA+wPtGBYkkaTLGDYhvJHk38Bvdu6g/C3xpUwtV1TnALTMmvwj4RDf8CeDFjUWfD5xVVbdU1U+As7hn0EiSJmjcu5iOAF4LXAy8HjidwRvm5mLHqrq+G/4RsGOjzc7AD4fG13fT7iHJamA1wPLly+dYkjRZdqmixWjcu5h+BfxN95k3VVVJ7tXT2VV1LHAswMqVK33SW5Lmybh9Mf0/Gtccquq35rDNG5LsVFXXJ9kJuLHR5lpg1dD4LsDZc9iWJGmONqcvpo3uD7wceMgct3kqcChwZPf99402XwX+x9CF6ecB75rj9iRJczDWReqqunnoc21V/Tlw4KaWS3IS8B1g9yTrk7yWQTA8N8mVwHO6cZKsTPLxbnu3AP8VOL/7fKCbJkmaknFPMe09NHofBkcUm1y2qg4ZMevZjbZrgH8/NH48cPw49UmS5t+4p5g+NDS8AbgGeMW8VyNJWjDGvYvpmZMuRJK0sIx7iuk/zja/qj48P+VIkhaKzbmL6UkM7kACeAFwHnDlJIqSJPVv3IDYBdi7qm4HSPJ+4LSqetWkCpMk9Wvcvph2BO4cGr+TdhcZkqQtxLhHEJ8EzktySjf+Yu7ucE+StAUa9y6m/57kDGDfbtIfV9X3JleWJKlv455iAngAcFtV/QWwPsmjJlSTJGkBGPeVo+8D3snd/SFtA/ztpIqSJPVv3COIlwAvBH4GUFXXAdtNqihJUv/GDYg7q6rouvxO8sDJlSRJWgjGDYi/S/IxYPskrwO+xjy/PEiStLBs8i6mJAFOBh4D3AbsDvxpVZ014dokST0ap8vuSnJ6VT0eMBQkaYkY9xTTBUmeNNFKJEkLyrhPUj8ZeFWSaxjcyRQGBxdPmFRhkqR+zRoQSZZX1T8Bz59SPZKkBWJTp5i+CFBVPwA+XFU/GP7MZYNJdk+ybuhzW5LDZrRZleTWoTZ/OpdtSZLmblOnmDI0/FvzscGqugLYCyDJVsC1wCmNpt+sqoPmY5uSpM23qSOIGjE8X54N/N+5Ho1IkiZnUwGxZ3cK6HbgCd3wbUluT3LbPGz/YOCkEfOekuTCJGckeeyoFSRZnWRNkjU33XTTPJQkSYJNnGKqqq0mteEk92XQv9O7GrMvAB5ZVXckOYDBtZDdRtR4LHAswMqVKydxlCNJS9LmdPc93/YHLqiqG2bOqKrbquqObvh0YJskO0y7QElayvoMiEMYcXopycO7Lj5Isg+DOm+eYm2StOSN+6DcvOp6g30u8PqhaW8AqKpjgJcBb0yyAfgFcHDXm6wkaUp6CYiq+hnw0BnTjhkaPho4etp1SZLu1ucpJknSAmZASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmnrpamMhWnHEaX2XIEkLikcQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpqbeASHJNkouTrEuypjE/ST6S5KokFyXZu486JWmp6vtBuWdW1Y9HzNsf2K37PBn4aPctSZqChXyK6UXAJ2vgXGD7JDv1XZQkLRV9BkQBZyZZm2R1Y/7OwA+Hxtd3035NktVJ1iRZc9NNN02oVElaevoMiKdV1d4MTiW9OcnT57KSqjq2qlZW1cply5bNb4WStIT1FhBVdW33fSNwCrDPjCbXArsOje/STZMkTUEvAZHkgUm22zgMPA+4ZEazU4E/6u5m+j3g1qq6fsqlStKS1dddTDsCpyTZWMOnq+orSd4AUFXHAKcDBwBXAT8H/rinWiVpSeolIKrqamDPxvRjhoYLePM065Ik3W0h3+YqSeqRASFJajIgJElNBoQkqcmAkCQ19d1ZnyRtMVYccVov273myAMnsl6PICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpya42JE1EX91OaP54BCFJapp6QCTZNcnXk3w/yaVJ3tZosyrJrUnWdZ8/nXadkrTU9XGKaQPwJ1V1QZLtgLVJzqqq789o982qOqiH+iRJ9HAEUVXXV9UF3fDtwGXAztOuQ5I0u16vQSRZAfwu8N3G7KckuTDJGUkeO93KJEm93cWUZFvg88BhVXXbjNkXAI+sqjuSHAB8EdhtxHpWA6sBli9fPrmCJWmJ6eUIIsk2DMLhxKr6wsz5VXVbVd3RDZ8ObJNkh9a6qurYqlpZVSuXLVs20bolaSnp4y6mAMcBl1XVh0e0eXjXjiT7MKjz5ulVKUnq4xTTU4E/BC5Osq6b9m5gOUBVHQO8DHhjkg3AL4CDq6p6qFWSlqypB0RVfQvIJtocDRw9nYokSS0+SS1JajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpqZeASLJfkiuSXJXkiMb8+yU5uZv/3SQreihTkpa0qQdEkq2AvwL2B/YADkmyx4xmrwV+UlX/BjgK+OB0q5Qk9XEEsQ9wVVVdXVV3Ap8BXjSjzYuAT3TDnwOenSRTrFGSlryte9jmzsAPh8bXA08e1aaqNiS5FXgo8OOZK0uyGljdjd6R5Ip5r/jX7dCqYwux5PbtKRsHPnjQVIuZZ0vu97aFmLd9y707x/LIUTP6CIh5VVXHAsdOa3tJ1lTVymltb5rct8XJfVucFsO+9XGK6Vpg16HxXbppzTZJtgYeBNw8leokSUA/AXE+sFuSRyW5L3AwcOqMNqcCh3bDLwP+d1XVFGuUpCVv6qeYumsKbwG+CmwFHF9Vlyb5ALCmqk4FjgM+leQq4BYGIbJQTO10Vg/ct8XJfVucFvy+xX/MJUktPkktSWoyICRJTQbELJIcn+TGJJcMTTs5ybruc02SdT2WOGcj9m2vJOd2+7YmyT591jhXI/ZtzyTfSXJxki8l+c0+a5yLJLsm+XqS7ye5NMnbuukPSXJWkiu77wf3XevmmmXfXt6N/yrJgr4ldJRZ9u3Pklye5KIkpyTZvudS78FrELNI8nTgDuCTVfW4xvwPAbdW1QemXty91Nq3JGcCR1XVGUkOAN5RVat6LHNORuzb+cDbq+obSV4DPKqq/nOfdW6uJDsBO1XVBUm2A9YCLwZeDdxSVUd2fZs9uKre2V+lm2+WfSvgV8DHGPz+1vRX5dzMsm+7MLhDc0MyeNRtof3ePIKYRVWdw+Auqnvouv54BXDSVIuaJyP2rYCN/1k/CLhuqkXNkxH79tvAOd3wWcDvT7WoeVBV11fVBd3w7cBlDHodGO6a5hMM/vgsKqP2raouq6pJ944wUbPs25lVtaFrdi6DwFhQFv2T1D3aF7ihqq7su5B5dBjw1ST/k8E/D/+233Lm1aUM/pB+EXg5v/6w5qLT9XD8u8B3gR2r6vpu1o+AHfuqaz7M2Lctyiz79hrg5KkXtAkeQczdISzSo4dZvBE4vKp2BQ5n8DzKluI1wJuSrAW2A+7suZ45S7It8HngsKq6bXhe90Dpoj1vPNu+LXaj9i3Je4ANwIl91TaKRxBz0HX/8VLgiX3XMs8OBd7WDX8W+HiPtcyrqroceB5Akt8GDuy3orlJsg2DPzInVtUXusk3JNmpqq7vznff2F+Fczdi37YIo/YtyauBg4BnL8TeIjyCmJvnAJdX1fq+C5ln1wHP6IafBWwxp8+SPKz7vg/wXuCYfivafN11r+OAy6rqw0OzhrumORT4+2nXdm/Nsm+L3qh9S7If8A7ghVX1877qm413Mc0iyUnAKgbd8t4AvK+qjktyAnBuVS26PzIbtfYNuAL4CwZHlv8MvKmq1vZV41yN2LdtgTd3Tb4AvGsh/sc2myRPA74JXMzgzh6AdzM4n/13wHLgB8Arqqp5c8VCNcu+3Q/4S2AZ8FNgXVU9v48a52qWffsIg/3b2BHpuVX1hulXOJoBIUlq8hSTJKnJgJAkNRkQkqQmA0KS1GRASJKaDAgtKkkeOtSb7o+SXDs0ft8xll+VZOwuRJKsSPLvNrddkpVJPjJf7e+tJGcv1t5Q1R8DQotKVd1cVXtV1V4MHnY7auN4VY3TfcYqNq+PqRXAJgNiZruqWlNVb53H9tLUGRBa9JI8Mck3kqxN8tWuuwmSvLXrg/+iJJ/pOkp7A3B4d8Sx74z1PGPoaOR7XdfMRwL7dtMO7/7z/2aSC7rPxrCZ2W5Vki9vxnqH22+b5H9l8O6Ki5L8/ow690vy2aHx4WU/msG7PC5N8l9G/LzuGBp+WffgJ0mWJfl8kvO7z1Pn+jvRFqKq/PhZlB/g/cB/Av4RWNZNeyVwfDd8HXC/bnj7oWXePmJ9XwKe2g1vy+CJ8lXAl4faPAC4fze8G7CmG57Z7l/Hx1zvcPsPAn8+NO/BM+rcGvgn4IHd+EeBV3XDD+m+twLOBp7QjZ8NrOyG7xha18uAE7rhTwNP64aXM+gaovffs5/+PnbWp8XufsDjgLMGXd6wFbCx6+uLgBOTfJFBN9+b8m3gw0lOBL5QVeu7dQ7bBjg6yV7AXQzeMzEf6x32HODgjSNV9ZPhmTV4wcxXgBck+RyDjgff0c1+RZLVDEJkJ2APBj+HcTwH2GOott9Msm1V3THLMtqCGRBa7AJcWlVPacw7EHg68ALgPUkeP9uKavBGttOAA4BvJ2n1+XM4g/6d9mRwivafN1XgmOvdXJ8B3sLgxUhrqur2JI8C3g48qap+0p06un+rpKHh4fn3AX6vqja5T1oavAahxe6XwLIkT4FBt8pJHtv12rprVX0deCeDN+RtC9zO4H0Q95Dk0VV1cVV9EDgfeEyj/YOA66vqV8AfMjhiYR7WO+ws7u5YkLTfMf0NYG/gdQzCAgZvA/wZcGuSHYH9R6z/hiS/0/2MXjI0/UzgPwxtd68Ry2uJMCC02P2KwXn0Dya5EFjH4C6lrYC/TXIx8D3gI1X1UwbXA17SukgNHJbkkiQXAf8CnMHg9MxdSS5Mcjjw18Ch3bYew+APMo12m7veYf8NeHC3zIXAM2fudFXdBXyZQQh8uZt2YbevlzO4nvDtET+zI7pl/pG7T8cBvBVY2V0Y/z6DC/pawuzNVZLU5BGEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlq+v/Aa8GYN/SqPQAAAABJRU5ErkJggg==", - "image/svg+xml": "\n\n\n \n \n \n \n 2022-05-18T12:02:51.846030\n image/svg+xml\n \n \n Matplotlib v3.5.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVPUlEQVR4nO3de5BmdX3n8feHi6KCCmGcJTCmiTWiGMOIA8EgK2pWuahIjATWGKKWkwtGYZNdR00pW1mqIImQuLuSYMmCEUUMXhAwcinRjVnEYYThHiY6hBkGmKgroFkI8N0/zunDk6a75+mhnz7PzLxfVaeec37n9u0Hpj99br+TqkKSJIAd+i5AkjQ+DAVJUsdQkCR1DAVJUsdQkCR1duq7gKdizz33rImJib7LkJ5wxx3N53779VuHNIvrr7/+n6tq0XTztupQmJiYYNWqVX2XIT3h8MObz2uu6bMKaVZJ7ppp3shOHyVZkuTrSW5NckuS97XtpybZkOSGdjhqYJ0PJFmb5I4krx9VbZKk6Y3ySOFR4A+qanWS3YDrk1zZzjurqv5scOEk+wPHAy8Bfha4KskLq+qxEdYoSRowsiOFqtpYVavb8QeB24C9Z1nlGODCqnq4qr4PrAUOHlV9kqQnW5C7j5JMAC8Dvt02vSfJmiTnJtm9bdsbuHtgtfVMEyJJViRZlWTVpk2bRlm2JG13Rh4KSXYFLgZOrqoHgLOBFwDLgI3AR+eyvao6p6qWV9XyRYumvXguSdpCIw2FJDvTBMIFVfUFgKq6r6oeq6rHgU/wxCmiDcCSgdX3adskSQtklHcfBfgkcFtVnTnQvtfAYscCN7fjlwDHJ3l6kn2BpcB1o6pPkvRko7z76FDg7cBNSW5o2z4InJBkGVDAOuC3AarqliQXAbfS3Ll0knceSdLCGlkoVNXfAZlm1uWzrHMacNqoapIkzW6rfqJZ2pyJlZct6P4u/N4PADh+5WWsO/3oBd23NB/sEE+S1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1PF9CtKILPS7HCb5Hgc9FR4pSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqTOyUEiyJMnXk9ya5JYk72vb90hyZZI728/d2/Yk+ViStUnWJDlwVLVJkqY3yiOFR4E/qKr9gUOAk5LsD6wErq6qpcDV7TTAkcDSdlgBnD3C2iRJ0xhZKFTVxqpa3Y4/CNwG7A0cA5zfLnY+8OZ2/BjgU9W4Fnhukr1GVZ8k6ckW5JpCkgngZcC3gcVVtbGddS+wuB3fG7h7YLX1bdvUba1IsirJqk2bNo2uaEnaDo08FJLsClwMnFxVDwzOq6oCai7bq6pzqmp5VS1ftGjRPFYqSRppKCTZmSYQLqiqL7TN902eFmo/72/bNwBLBlbfp22TJC2QUd59FOCTwG1VdebArEuAE9vxE4EvD7T/ZnsX0iHAjwdOM0mSFsBOI9z2ocDbgZuS3NC2fRA4HbgoybuAu4Dj2nmXA0cBa4GfAu8YYW2SpGmMLBSq6u+AzDD7tdMsX8BJo6pHkrR5PtEsSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeqM8nWcUmdi5WV9lyBpCB4pSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6Q4VCkpeOuhBJUv+GPVL4eJLrkvxekucMs0KSc5Pcn+TmgbZTk2xIckM7HDUw7wNJ1ia5I8nr5/hzSJLmwVChUFWHAW8DlgDXJ/lMkv+wmdXOA46Ypv2sqlrWDpcDJNkfOB54SbvOx5PsOOTPIEmaJ0NfU6iqO4E/At4PvAr4WJLbk/zqDMt/E/jhkJs/Briwqh6uqu8Da4GDh61NkjQ/hr2m8ItJzgJuA14DvLGqXtyOnzXHfb4nyZr29NLubdvewN0Dy6xv26arZUWSVUlWbdq0aY67liTNZtgjhf8OrAYOqKqTqmo1QFXdQ3P0MKyzgRcAy4CNwEfnsC7tPs+pquVVtXzRokVzXV2SNIudhlzuaOBfquoxgCQ7ALtU1U+r6q+H3VlV3Tc5nuQTwKXt5Aaa6xWT9mnbJM3RxMrLetnvutOP7mW/ml/DHilcBTxjYPqZbducJNlrYPJYYPLOpEuA45M8Pcm+wFLgurluX5L01Ax7pLBLVT00OVFVDyV55mwrJPkscDiwZ5L1wEeAw5MsAwpYB/x2u71bklwE3Ao8Cpw0eVQiSVo4w4bCT5IcOHktIcnLgX+ZbYWqOmGa5k/OsvxpwGlD1iNJGoFhQ+Fk4PNJ7gEC/Dvg10dVlCSpH0OFQlV9J8mLgP3apjuq6l9HV5YkqQ/DHikAHARMtOscmISq+tRIqpIk9WKoUEjy1zTPF9wATF4ALsBQkKRtyLBHCsuB/auqRlmMJKlfwz6ncDPNxWVJ0jZs2COFPYFbk1wHPDzZWFVvGklVkqReDBsKp46yCEnSeBj2ltRvJPk5YGlVXdU+zez7DiRpGzNs19nvBv4G+Ku2aW/gSyOqSZLUk2EvNJ8EHAo8AN0Ld543qqIkSf0YNhQerqpHJieS7ETznIIkaRsybCh8I8kHgWe072b+PPCV0ZUlSerDsKGwEtgE3ETT3fXlzO2Na5KkrcCwdx89DnyiHSRJ26hh+z76PtNcQ6iqn5/3iiRJvZlL30eTdgHeCuwx/+VIkvo01DWFqvrBwLChqv4c8C3dkrSNGfb00YEDkzvQHDnM5V0MkqStwLC/2D86MP4osA44bt6rkST1ati7j1496kIkSf0b9vTRf5ptflWdOT/lSJL6NJe7jw4CLmmn3whcB9w5iqIkSf0YNhT2AQ6sqgcBkpwKXFZVvzGqwiRJC2/Ybi4WA48MTD/StkmStiHDHil8CrguyRfb6TcD54+kIklSb4a9++i0JF8FDmub3lFV3x1dWZKkPgx7+gjgmcADVfUXwPok+46oJklST4Z9HedHgPcDH2ibdgY+PaqiJEn9GPZI4VjgTcBPAKrqHmC3URUlSerHsKHwSFUVbffZSZ41upIkSX0ZNhQuSvJXwHOTvBu4Cl+4I0nbnM3efZQkwOeAFwEPAPsBH66qK0dcmyRpgW02FKqqklxeVS8Fhg6CJOcCbwDur6pfaNv2oAmYCdqeVqvqR23w/AVwFPBT4LeqavUcfxZJ0lM07Omj1UkOmuO2zwOOmNK2Eri6qpYCV7fTAEcCS9thBXD2HPclSZoHw4bCLwHXJvnHJGuS3JRkzWwrVNU3gR9OaT6GJ56EPp/myejJ9k9V41qaaxd7DVmbJGmezHr6KMnzq+qfgNfP0/4WV9XGdvxenug/aW/g7oHl1rdtG5EkLZjNXVP4Ek3vqHclubiq3jJfO26vVdRc10uyguYUE89//vPnqxxJEps/fZSB8Z+fh/3dN3laqP28v23fACwZWG6ftu1JquqcqlpeVcsXLVo0DyVJkiZtLhRqhvEtdQlwYjt+IvDlgfbfTOMQ4McDp5kkSQtkc6ePDkjyAM0RwzPacdrpqqpnz7Riks8ChwN7JlkPfAQ4neZBuHcBdwHHtYtfTnM76lqaW1LfsWU/jiTpqZg1FKpqxy3dcFWdMMOs106zbAEnbem+JEnzYy5dZ0uStnGGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqbfUezth0TKy/ruwRJY84jBUlSx1CQJHUMBUlSx2sKkuZFn9es1p1+dG/73tZ4pCBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqROL6/jTLIOeBB4DHi0qpYn2QP4HDABrAOOq6of9VGfJG2v+jxSeHVVLauq5e30SuDqqloKXN1OS5IW0DidPjoGOL8dPx94c3+lSNL2qa9QKOCKJNcnWdG2La6qje34vcDi6VZMsiLJqiSrNm3atBC1StJ2o5drCsArq2pDkucBVya5fXBmVVWSmm7FqjoHOAdg+fLl0y4jSdoyvRwpVNWG9vN+4IvAwcB9SfYCaD/v76M2SdqeLXgoJHlWkt0mx4HXATcDlwAntoudCHx5oWuTpO1dH6ePFgNfTDK5/89U1d8m+Q5wUZJ3AXcBx/VQmyRt1xY8FKrqe8AB07T/AHjtQtcjSXrCON2SKknqmaEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkTh+v45SkeTWx8rJe9rvu9KN72e8oeaQgSeoYCpKkjqEgSep4TaEHfZ3/lKTN8UhBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHR9ek6Qt1OeDqKPqjM8jBUlSx1CQJHW229NH9j8kSU82dkcKSY5IckeStUlW9l2PJG1PxioUkuwI/E/gSGB/4IQk+/dblSRtP8YqFICDgbVV9b2qegS4EDim55okabsxbtcU9gbuHpheD/zS4AJJVgAr2smHktyxQLXN1Z7AP/ddxGaMe43jXh9MqfEVkyNnvKGXYqax1X2HY2rsaswZ/2ZyrvX93Ewzxi0UNquqzgHO6buOzUmyqqqW913HbMa9xnGvD8a/xnGvD6xxPsxnfeN2+mgDsGRgep+2TZK0AMYtFL4DLE2yb5KnAccDl/RckyRtN8bq9FFVPZrkPcDXgB2Bc6vqlp7L2lJjf4qL8a9x3OuD8a9x3OsDa5wP81Zfqmq+tiVJ2sqN2+kjSVKPDAVJUsdQmAdJzk1yf5Kbp7T/fpLbk9yS5E/6qq+t5Uk1JvlckhvaYV2SG8asvmVJrm3rW5Xk4L7qm6XGA5L8nyQ3JflKkmf3WN+SJF9Pcmv7/9z72vY9klyZ5M72c/cxq++t7fTjSXq97XOWGv+0/be8JskXkzx3zOr747a2G5JckeRnt3gnVeXwFAfg3wMHAjcPtL0auAp4ejv9vHGrccr8jwIfHqf6gCuAI9vxo4Brxu07pLlj7lXt+DuBP+6xvr2AA9vx3YB/oOku5k+AlW37SuCMMavvxcB+wDXA8p7/G89U4+uAndr2M8bwO3z2wDLvBf5yS/fhkcI8qKpvAj+c0vy7wOlV9XC7zP0LXtiAGWoEIEmA44DPLmhRA2aor4DJv7yfA9yzoEVNMUONLwS+2Y5fCbxlQYsaUFUbq2p1O/4gcBtNLwHHAOe3i50PvHmc6quq26pqLHommKXGK6rq0Xaxa2meoRqn+h4YWOxZNP92toihMDovBA5L8u0k30hyUN8FzeIw4L6qurPvQqY4GfjTJHcDfwZ8oN9ypnULT/TP9Vb+7cOXvUkyAbwM+DawuKo2trPuBRb3VdekKfWNpVlqfCfw1QUvaIqp9SU5rf238jbgw1u6XUNhdHYC9gAOAf4zcFH7F/k4OoEejxJm8bvAKVW1BDgF+GTP9UznncDvJbme5nD+kZ7rIcmuwMXAyVP+gqSa8wu93oc+W33jYqYak3wIeBS4oK/a2jqeVF9Vfaj9t3IB8J4t3bahMDrrgS9U4zrgcZpOq8ZKkp2AXwU+13ct0zgR+EI7/nmaXnTHSlXdXlWvq6qX0wTrP/ZZT5KdaX5ZXFBVk9/dfUn2aufvBfR2KnOG+sbKTDUm+S3gDcDb2nDtxRDf4QU8hdOYhsLofInmYjNJXgg8jTHrZbH1K8DtVbW+70KmcQ/wqnb8NcC4nd4iyfPazx2APwL+ssdaQnM0dVtVnTkw6xKagKX9/PJC1waz1jc2ZqoxyRHAfwHeVFU/HcP6lg4sdgxw+xbvpI8r6NvaQPMX4kbgX2mOEN5FEwKfBm4GVgOvGbca2/bzgN8Z0+/wlcD1wI00501fPoY1vo/mDpB/AE6n7SWgp/peSXNqaA1wQzscBfwMcDVNqF4F7DFm9R3bfp8PA/cBXxvD73AtTbf+k21bfHfPiOq7uP1dswb4Cs3F5y3ah91cSJI6nj6SJHUMBUlSx1CQJHUMBUlSx1CQJHUMBY21JD8z0JPrvUk2DEw/bYj1D0/yy3PY30SS/zjX5ZIsT/Kx+Vr+qUpyTd89jmrrZChorFXVD6pqWVUto3kw7KzJ6aoapkuJw4GhQwGYADYbClOXq6pVVfXeeVxe6oWhoK1Okpe3nQxen+RrA104vLftZ35NkgvbDsN+BzilPbI4bMp2XjVw1PHdJLvRPIB2WNt2SvsX/v9OsrodJgNm6nKHJ7l0DtsdXH7XJP8rzTsZ1iR5y5Q6j0jy+YHpwXXPTvOuiVuS/NcZvq+HBsZ/Lcl57fiiJBcn+U47HLql/020DenryUEHh7kOwKk0nQv+PbCobft14Nx2/B6eeH/FcwfW+cMZtvcV4NB2fFeaTgwPBy4dWOaZwC7t+FJgVTs+dbluesjtDi5/BvDnA/N2n1LnTsA/Ac9qp88GfqMd36P93JHmfQS/2E5fQ/tuAuChgW39GnBeO/4Z4JXt+PNpuk7o/b+zQ7/DTsPHhzQWng78AnBl2+nsjjRdT0DziP8FSb5E0/fU5nwLODPJBTSdF66fpiPbnYH/kWQZ8BhNl+jzsd1BvwIcPzlRVT8anFlVjyb5W+CNSf4GOJqmHx6A45KsoAmOvWheuLJmiBon97v/QG3PTrJrVT00yzraxhkK2toEuKWqXjHNvKNp3o72RuBDSV4624aq6vQkl9H0HfOtJK+fZrFTaPrjOYDmdOv/21yBQ253ri6k6Q75hzRHKw8m2Rf4Q+CgqvpRe1pol+lKGhgfnL8DcEhVbfZn0vbDawra2jwMLEryCmi6EU7ykraX0iVV9XXg/TRvatsVeJDmPQdPkuQFVXVTVZ1B81rNF02z/HOAjVX1OPB2miMT5mG7g64EThpYf7p3KH+D5lWg76YJCGjeSvcT4MdJFgNHzrD9+5K8uP2Ojh1ovwL4/YH9LpthfW1HDAVtbR6nOS9+RpIbaXqJ/GWaX9afTnIT8F3gY1X1f2nO7x873YVm4OQkNydZQ9Pz6VdpTr08luTGJKcAHwdObPf1Ippfwkyz3Fy3O+i/Abu369xI2+X6oKp6DLiU5hf/pW3bje3PejvN9YFvzfCdrWzX+XueONUGzbt8l7cXt2+luSiv7Zy9pEqSOh4pSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6/x+yqXuOiJ5ymgAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" @@ -527,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -567,7 +572,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 64, "metadata": { "collapsed": false, "pycharm": { @@ -587,18 +592,15 @@ "p: 0.0\n", "Wartość statystyki testowej z próby: [8.04931557]\n", "Wartości statystyk z prób boostrapowych:\n", - "[0.2748409], [-0.61193473], [1.24335163], [-2.56879464], [0.34249038], ... (i 95 pozostałych)\n", + "[0.50661164], [-1.11155681], [1.47250746], [0.52178413], [0.77552826], ... (i 995 pozostałych)\n", "\n", "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXRklEQVR4nO3de7RedX3n8feHgBdABeQMIhBDHQaLKEiPqMVLFERuiraOwowOWmvEwVEcOzVql1rbmYWr46VKK6aAeEF0vGBRUIlWvLUqIXJHCkNREhCiUC7qSIPf+ePZkcfj7yRPkueSk/N+rbXX2Zff3vv7JHA+2Zfn90tVIUnSTNtMugBJ0pbJgJAkNRkQkqQmA0KS1GRASJKatp10AcO066671qJFiyZdhiSNz7XX9n7uu+8m7X7JJZf8pKqmWtu2qoBYtGgRK1asmHQZkjQ+ixf3fl500SbtnuSHs23zFpMkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKlpq/om9XyzaOn5m7zvjaccPcRKJG2NvIKQJDUZEJKkJgNCktRkQEiSmgwISVLTyAIiyV5Jvpbk6iRXJXldt36XJMuTXNf93HmW/U/o2lyX5IRR1SlJahvlFcRa4A1VtR/wZOCkJPsBS4GvVtU+wFe75d+QZBfgbcCTgIOBt80WJJKk0RhZQFTVLVW1spu/G7gG2AM4Fvhw1+zDwPMbuz8HWF5Vt1fVHcBy4IhR1SpJ+m1jeQaRZBHwBOC7wG5VdUu36cfAbo1d9gBu6lte1a2TJI3JyL9JnWRH4DPAyVV1V5Jfb6uqSlKbefwlwBKAhQsXbs6hNCC/wS3NDyO9gkiyHb1wOLuqPtutvjXJ7t323YHbGruuBvbqW96zW/dbqmpZVU1X1fTU1NTwipekeW6UbzEFOAO4pqre3bfpPGDdW0knAH/f2P3LwOFJdu4eTh/erZMkjckoryAOAV4KPCvJpd10FHAK8Owk1wGHdcskmU5yOkBV3Q78BXBxN72jWydJGpORPYOoqm8BmWXzoY32K4A/7ls+EzhzNNVJkjbEb1JLkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktQ0sgGDkpwJHAPcVlX7d+s+CezbNdkJ+NeqOrCx743A3cB9wNqqmh5VnZKktpEFBHAWcCrwkXUrqurF6+aTvAu4cz37P7OqfjKy6iRJ6zXKIUe/kWRRa1uSAC8CnjWq80uSNs+knkE8Dbi1qq6bZXsBFya5JMmS9R0oyZIkK5KsWLNmzdALlaT5alIBcTxwznq2P7WqDgKOBE5K8vTZGlbVsqqarqrpqampYdcpSfPW2AMiybbAHwCfnK1NVa3uft4GnAscPJ7qJEnrTOIK4jDgB1W1qrUxyQ5JHrJuHjgcuHKM9UmSGGFAJDkH+Cdg3ySrkryi23QcM24vJXlkkgu6xd2AbyW5DPgecH5VfWlUdUqS2kb5FtPxs6x/WWPdzcBR3fwNwAGjqks9i5aeP+kSJG3h/Ca1JKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNoxxR7swktyW5sm/d25OsTnJpNx01y75HJLk2yfVJlo6qRknS7EZ5BXEWcERj/Xuq6sBuumDmxiQLgL8BjgT2A45Pst8I65QkNYwsIKrqG8Dtm7DrwcD1VXVDVd0LfAI4dqjFSZI2aBLPIF6T5PLuFtTOje17ADf1La/q1jUlWZJkRZIVa9asGXatkjRvjTsgPgA8GjgQuAV41+YesKqWVdV0VU1PTU1t7uEkSZ2xBkRV3VpV91XVr4C/o3c7aabVwF59y3t26yRJYzTWgEiye9/iC4ArG80uBvZJsneSBwDHAeeNoz5J0v22HdWBk5wDLAZ2TbIKeBuwOMmBQAE3Aq/q2j4SOL2qjqqqtUleA3wZWACcWVVXjapOSVLbyAKiqo5vrD5jlrY3A0f1LV8A/NYrsJKk8fGb1JKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUNFBAJHncqAuRJG1ZBr2C+Nsk30vyX5M8bKQVSZK2CAMFRFU9DfjP9MZpuCTJx5M8e6SVSZImauBnEFV1HfBnwBuBZwDvS/KDJH8wquIkSZMz6DOIxyd5D3AN8CzguVX1u938e0ZYnyRpQga9gng/sBI4oKpOqqqV8OtxHP6stUOSM5PcluTKvnV/1V11XJ7k3CQ7zbLvjUmuSHJpkhUb9YkkSUMxaEAcDXy8qn4BkGSbJNsDVNVHZ9nnLOCIGeuWA/tX1eOBfwbetJ5zPrOqDqyq6QFrlCQN0aAB8RXgwX3L23frZlVV3wBun7Huwqpa2y1+B9hzwPNLksZs0IB4UFXds26hm99+M8/9R8AXZ9lWwIVJLkmyZDPPI0naBIMGxM+SHLRuIcnvAb/Y1JMmeQuwFjh7liZPraqDgCOBk5I8fT3HWpJkRZIVa9as2dSSJEkzbDtgu5OBTyW5GQjwCODFm3LCJC8DjgEOrapqtamq1d3P25KcCxwMfGOWtsuAZQDT09PN40mSNt5AAVFVFyd5DLBvt+raqvq3jT1ZkiOAPwWeUVU/n6XNDsA2VXV3N3848I6NPZckafMMegUB8ERgUbfPQUmoqo/M1jjJOcBiYNckq4C30Xtr6YHA8iQA36mqE5M8Eji9qo4CdgPO7bZvS+/tqS9t7AeTJG2egQIiyUeBRwOXAvd1qwuYNSCq6vjG6jNmaXszcFQ3fwNwwCB1ae5ZtPT8iZz3xlOOnsh5pbls0CuIaWC/2Z4ZSJK2PoO+xXQlvQfTkqR5YtAriF2Bq5N8D/jlupVV9byRVCVJmrhBA+LtoyxCkrTlGfQ1168neRSwT1V9peuHacFoS5MkTdKg3X2/Evg08MFu1R7A50ZUkyRpCzDoQ+qTgEOAu+DXgwf9u1EVJUmavEED4pdVde+6hSTb0vsehCRpKzVoQHw9yZuBB3djUX8K+PzoypIkTdqgAbEUWANcAbwKuIBZRpKTJG0dBn2L6VfA33WTJGkeGLQvpn+h8cyhqn5n6BVJkrYIG9MX0zoPAv4jsMvwy5EkbSkGegZRVT/tm1ZX1XsBu8eUpK3YoLeYDupb3IbeFcXGjCUhSZpjBv0l/66++bXAjcCLhl6NJGmLMehbTM/clIMnOZPe+NO3VdX+3bpdgE/SG53uRuBFVXVHY98TuP9V2r+sqg9vSg2SpE0z6C2m/76+7VX17lk2nQWcym+OPLcU+GpVnZJkabf8xhnn24XeEKXT9N6euiTJea0gkSSNxqBflJsGXk2vk749gBOBg4CHdFNTVX0DuH3G6mOBdVcDHwae39j1OcDyqrq9C4XlwBED1ipJGoJBn0HsCRxUVXcDJHk7cH5VvWQTzrlbVd3Szf8Y2K3RZg/gpr7lVd2635JkCbAEYOHChZtQjiSpZdAriN2Ae/uW76X9i32jdGNcb1anf1W1rKqmq2p6ampqc0uSJHUGvYL4CPC9JOd2y8/n/ttEG+vWJLtX1S1Jdgdua7RZDSzuW94TuGgTzydJ2gSDflHufwIvB+7oppdX1f/axHOeB5zQzZ8A/H2jzZeBw5PsnGRn4PBunSRpTAa9xQSwPXBXVf01sCrJ3hvaIck5wD8B+yZZleQVwCnAs5NcBxzWLZNkOsnpAFV1O/AXwMXd9I5unSRpTAZ9zXXdK6f7Ah8CtgM+Rm+UuVlV1fGzbDq00XYF8Md9y2cCZw5SnyRp+Aa9gngB8DzgZwBVdTPreb1VkjT3DRoQ9/a/cZRkh9GVJEnaEgwaEP8nyQeBnZK8EvgKDh4kSVu1DT6DSBJ6fSc9BriL3nOIt1bV8hHXJkmaoA0GRFVVkguq6nH0uryQJM0Dg95iWpnkiSOtRJK0RRn0m9RPAl6S5EZ6bzKF3sXF40dVmCRpstYbEEkWVtWP6PWuKkmaRzZ0BfE5er24/jDJZ6rqD8dQkyRpC7ChZxDpm/+dURYiSdqybCggapZ5SdJWbkO3mA5Iche9K4kHd/Nw/0Pqh460OknSxKw3IKpqwbgKkSRtWTamu29J0jxiQEiSmgwISVLT2AMiyb5JLu2b7kpy8ow2i5Pc2dfmreOuU5Lmu0G72hiaqroWOBAgyQJgNXBuo+k3q+qYMZYmSeoz6VtMhwL/t6p+OOE6JEkzTDogjgPOmWXbU5JcluSLSR472wGSLEmyIsmKNWvWjKZKSZqHJhYQSR5Ab5zrTzU2rwQeVVUHAO+n1ydUU1Utq6rpqpqempoaSa2SNB9N8griSGBlVd06c0NV3VVV93TzFwDbJdl13AVK0nw2yYA4nlluLyV5RDfUKUkOplfnT8dYmyTNe2N/iwkgyQ7As4FX9a07EaCqTgNeCLw6yVrgF8BxVWVngZI0RhMJiKr6GfDwGetO65s/FTh13HVJku436beYJElbKANCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpKaJfJNa91u09PxJlyBJTV5BSJKaDAhJUpMBIUlqMiAkSU0GhCSpaZJjUt+Y5IoklyZZ0dieJO9Lcn2Sy5McNIk6JWm+mvRrrs+sqp/Msu1IYJ9uehLwge6nJGkMtuRbTMcCH6me7wA7Jdl90kVJ0nwxySuIAi5MUsAHq2rZjO17ADf1La/q1t3S3yjJEmAJwMKFC0dXrealzfki442nHD3ESqTxm+QVxFOr6iB6t5JOSvL0TTlIVS2rqumqmp6amhpuhZI0j00sIKpqdffzNuBc4OAZTVYDe/Ut79mtkySNwUQCIskOSR6ybh44HLhyRrPzgP/Svc30ZODOqroFSdJYTOoZxG7AuUnW1fDxqvpSkhMBquo04ALgKOB64OfAyydUqyTNSxMJiKq6ATigsf60vvkCThpnXZKk+23Jr7lKkibIgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVLTJMek3qI49rAk/SavICRJTWMPiCR7JflakquTXJXkdY02i5PcmeTSbnrruOuUpPluEreY1gJvqKqV3bjUlyRZXlVXz2j3zao6ZgL1SZKYwBVEVd1SVSu7+buBa4A9xl2HJGn9JvoMIski4AnAdxubn5LksiRfTPLY9RxjSZIVSVasWbNmVKVK0rwzsYBIsiPwGeDkqrprxuaVwKOq6gDg/cDnZjtOVS2rqumqmp6amhpZvZI030wkIJJsRy8czq6qz87cXlV3VdU93fwFwHZJdh1zmZI0r03iLaYAZwDXVNW7Z2nziK4dSQ6mV+dPx1elJGkSbzEdArwUuCLJpd26NwMLAarqNOCFwKuTrAV+ARxXVTWBWiVp3hp7QFTVt4BsoM2pwKnjqWjzbc63sDUe/h1JG89vUkuSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1DSpMamPSHJtkuuTLG1sf2CST3bbv5tk0QTKlKR5bRJjUi8A/gY4EtgPOD7JfjOavQK4o6r+PfAe4J3jrVKSNIkriIOB66vqhqq6F/gEcOyMNscCH+7mPw0cmmS9w5RKkoZr7GNSA3sAN/UtrwKeNFubqlqb5E7g4cBPZh4syRJgSbd4T5Jrh17x5tmVRt1bET/fLDJ3rnv9O5zbep9v0/8N/ajZNkwiIIaqqpYByyZdx2ySrKiq6UnXMSp+vrlva/+Mfr5NN4lbTKuBvfqW9+zWNdsk2RZ4GPDTsVQnSQImExAXA/sk2TvJA4DjgPNmtDkPOKGbfyHwD1VVY6xRkua9sd9i6p4pvAb4MrAAOLOqrkryDmBFVZ0HnAF8NMn1wO30QmSu2mJvfw2Jn2/u29o/o59vE8V/mEuSWvwmtSSpyYCQJDUZEGOQ5K+S/CDJ5UnOTbLTpGsahg11mTKXJdkrydeSXJ3kqiSvm3RNo5BkQZLvJ/nCpGsZtiQ7Jfl09//eNUmeMumahinJ67v/Nq9Mck6SBw37HAbEeCwH9q+qxwP/DLxpwvVstgG7TJnL1gJvqKr9gCcDJ21ln2+d1wHXTLqIEflr4EtV9RjgALaiz5lkD+C1wHRV7U/vhZ+hv8xjQIxBVV1YVWu7xe/Q++7HXDdIlylzVlXdUlUru/m76f1y2WOyVQ1Xkj2Bo4HTJ13LsCV5GPB0em9EUlX3VtW/TrSo4dsWeHD3XbHtgZuHfQIDYvz+CPjipIsYglaXKVvVL9B1ut6EnwB8d8KlDNt7gT8FfjXhOkZhb2AN8KHuFtrpSXaYdFHDUlWrgf8N/Ai4Bbizqi4c9nkMiCFJ8pXuXuDM6di+Nm+hd+vi7MlVqo2RZEfgM8DJVXXXpOsZliTHALdV1SWTrmVEtgUOAj5QVU8AfgZsNc/JkuxM74p9b+CRwA5JXjLs88z5vpi2FFV12Pq2J3kZcAxw6FbyrfBBukyZ05JsRy8czq6qz066niE7BHhekqOABwEPTfKxqhr6L5kJWQWsqqp1V32fZisKCOAw4F+qag1Aks8Cvw98bJgn8QpiDJIcQe9S/nlV9fNJ1zMkg3SZMmd13cufAVxTVe+edD3DVlVvqqo9q2oRvb+7f9iKwoGq+jFwU5J9u1WHAldPsKRh+xHw5CTbd/+tHsoIHsJ7BTEepwIPBJZ3w1p8p6pOnGxJm2e2LlMmXNYwHQK8FLgiyaXdujdX1QWTK0kb6b8BZ3f/gLkBePmE6xmaqvpukk8DK+ndtv4+I+hyw642JElN3mKSJDUZEJKkJgNCktRkQEiSmgwISVKTAaE5JcnDk1zaTT9Osrpv+QED7L84ye9vxPkWJflPG9suyXSS9w2r/eZKclGSkQxsr62XAaE5pap+WlUHVtWBwGnAe9Ytd50Gbshiet84HdQiYIMBMbNdVa2oqtcOsb00dgaE5rwkv5fk60kuSfLlJLt361/bjedweZJPdJ3unQi8vrvieNqM4zyj72rk+0keApwCPK1b9/ruX/7fTLKym9aFzcx2i9eNsTDgcfvb75jkQ0mu6Gr/wxl1HpHkU33L/ft+IMmKbpyAP5/lz+uevvkXJjmrm59K8pkkF3fTIZv6d6KtRFU5Oc3JCXg78D+AfwSmunUvpvetbuh1f/zAbn6nvn3+ZJbjfR44pJvfkV5PA4uBL/S12R54UDe/D7Cim5/Z7tfLAx63v/07gff2bdt5Rp3b0utqYYdu+QPAS7r5XbqfC4CLgMd3yxfRGzsA4J6+Y70QOKub/zjw1G5+Ib1uRib+9+w0ucmuNjTXPRDYn/u7MVlAr/tjgMvpdbXwOeBzAxzr28C7k5wNfLaqVnXH7LcdcGqSA4H7gP8wpOP2O4y+wV+q6o7+jdXr5uRLwHO77haOptfXF8CLkiyhFyK70xvM6fIBalx33v36antokh2r6p717KOtmAGhuS7AVVXVGk7yaHqDxjwXeEuSx63vQFV1SpLzgaOAbyd5TqPZ64Fb6Y1Qtg3w/zZU4IDH3VifAF4D3E7vKubuJHsDfwI8saru6G4dtYah7O9fp3/7NsCTq2qDn0nzg88gNNf9EphKN95wku2SPDbJNsBeVfU14I3Aw+jd3rkbeEjrQEkeXVVXVNU76fVW+5hG+4cBt1TVr+h15regW7+5x+23HDipb/+dG22+Tm+8g1fSCwuAh9Ib9+DOJLvRGw625dYkv9v9Gb2gb/2F9Dq4W3feA2fZX/OEAaG57lf07qO/M8llwKX03lJaAHwsyRX0erp8X/WGnPw88ILWQ2rg5PQGeboc+Dd6I/9dDtyX5LIkrwf+FjihO9dj6P1CptFuY4/b7y+Bnbt9LgOeOfNDV9V9wBfohcAXunWXdZ/1B/SeJ3x7lj+zpd0+/8j9t+OgG+O4ezB+Nb0H+prH7M1VktTkFYQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWr6/15Iu2fHJRYeAAAAAElFTkSuQmCC", - "image/svg+xml": "\n\n\n \n \n \n \n 2022-05-18T12:02:55.815731\n image/svg+xml\n \n \n Matplotlib v3.5.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAULElEQVR4nO3df/BddX3n8eeLQEV+KLCkLAbolzopNCpGGi1b6hYXW5FUkW2XwlZlXce0U1yFtVsD7azszDITZ1tQ2soWf1SsKKWCioRagRXb2kUMiOGXrBkNkhggta4EdaHAe/+453u4E75J7je5555vvnk+Zu7ccz7n1/sk4b44vz4nVYUkSQB79V2AJGnuMBQkSS1DQZLUMhQkSS1DQZLU2rvvAnbFoYceWlNTU32XIUmTdf/9g+9jjtmpxW+//fZ/rKqFM03brUNhamqKNWvW9F2GJE3WSScNvm+5ZacWT/LAtqZ5+kiS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1Nqtn2jW+E2tXD2W9axftXws65E0WR4pSJJahoIkqdVZKCQ5MskXk9yb5J4k72zaL0yyMcmdzefUoWXOT7Iuyf1JXtNVbZKkmXV5TeFJ4F1VdUeSA4Hbk9zYTLukqv5weOYkS4AzgRcBLwBuSvIzVfVUhzVKkoZ0dqRQVZuq6o5meAtwH7BoO4ucBlxVVY9X1beBdcAruqpPkvRsE7mmkGQKeBnwlabp7UnWJvlIkoObtkXAg0OLbWCGEEmyIsmaJGs2b97cZdmStMfpPBSSHABcA5xbVY8ClwEvBJYCm4A/ms36quryqlpWVcsWLpzxxUGSpJ3UaSgk2YdBIFxZVdcCVNXDVfVUVT0NfJBnThFtBI4cWvyIpk2SNCFd3n0U4MPAfVV18VD74UOznQ7c3QxfB5yZ5DlJjgYWA7d1VZ8k6dm6vPvoROBNwF1J7mzaLgDOSrIUKGA98FsAVXVPkquBexncuXSOdx5J0mR1FgpV9fdAZph0w3aWuQi4qKuaJEnb5xPNkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqTW3n0XoPlpauXqsaxn/arlY1mPpNF4pCBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJanUWCkmOTPLFJPcmuSfJO5v2Q5LcmOSbzffBTXuSXJpkXZK1SY7vqjZJ0sy6PFJ4EnhXVS0BTgDOSbIEWAncXFWLgZubcYDXAoubzwrgsg5rkyTNoLNQqKpNVXVHM7wFuA9YBJwGXNHMdgXwhmb4NOBjNXArcFCSw7uqT5L0bBO5ppBkCngZ8BXgsKra1Ex6CDisGV4EPDi02Iambet1rUiyJsmazZs3d1e0JO2BOg+FJAcA1wDnVtWjw9OqqoCazfqq6vKqWlZVyxYuXDjGSiVJnYZCkn0YBMKVVXVt0/zw9Gmh5vuRpn0jcOTQ4kc0bZKkCeny7qMAHwbuq6qLhyZdB5zdDJ8NfHao/c3NXUgnAD8YOs0kSZqALl+ycyLwJuCuJHc2bRcAq4Crk7wVeAA4o5l2A3AqsA74EfCWDmuTJM2gs1Coqr8Hso3JJ88wfwHndFWPJGnHfKJZktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJrS77PtKETa1c3XcJknZzHilIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpNVIoJHlJ14VIkvo36pHCB5LcluR3kjy/04okSb0ZKRSq6pXAbwJHArcn+USSX+60MknSxI18TaGqvgn8AfBu4JeAS5N8I8m/7ao4SdJkjXpN4bgklwD3Af8GeF1V/WwzfEmH9UmSJmjUN6/9MfAh4IKq+vF0Y1V9N8kfdFKZJGniRg2F5cCPq+opgCR7AftW1Y+q6i86q06SNFGjXlO4CXju0Ph+TZskaR4ZNRT2rarHpkea4f22t0CSjyR5JMndQ20XJtmY5M7mc+rQtPOTrEtyf5LXzHZHJEm7btRQ+GGS46dHkvwc8OPtzA/wUeCUGdovqaqlzeeGZn1LgDOBFzXLfCDJghFrkySNyajXFM4F/irJd4EA/xL4je0tUFV/m2RqxPWfBlxVVY8D306yDngF8L9HXF6SNAYjhUJVfTXJscAxTdP9VfXPO7nNtyd5M7AGeFdVfR9YBNw6NM+Gpu1ZkqwAVgAcddRRO1mCJGkms+kQ7+XAccDxwFnND/tsXQa8EFgKbAL+aLYrqKrLq2pZVS1buHDhTpQgSdqWkY4UkvwFgx/zO4GnmuYCPjabjVXVw0Pr/CBwfTO6kUEXGtOOaNokSRM06jWFZcCSqqpd2ViSw6tqUzN6OjB9Z9J1wCeSXAy8AFgM3LYr25Ikzd6ooXA3g4vLm3Y047QknwROAg5NsgF4D3BSkqUMjjLWA78FUFX3JLkauBd4Ejhn+kE5SdLkjBoKhwL3JrkNeHy6sapev60FquqsGZo/vJ35LwIuGrEeSVIHRg2FC7ssQpI0N4x6S+qXkvwUsLiqbkqyH+DDZZI0z4zadfbbgE8Bf9Y0LQI+01FNkqSejPqcwjnAicCj0L5w5ye7KkqS1I9RQ+HxqnpieiTJ3gzuIJIkzSOjXmj+UpILgOc272b+HeBz3ZUlDUytXL3L61i/avkYKpH2DKMeKawENgN3MXi24AYG72uWJM0jo9599DTwweYjSZqnRu376NvMcA2hqn567BVJknozm76Ppu0L/DvgkPGXI0nq00jXFKrqe0OfjVX1PsCrd5I0z4x6+uj4odG9GBw5jHqUIUnaTYz6wz78MpwnGfRwesbYq5Ek9WrUu49e1XUhkqT+jXr66D9vb3pVXTyeciRJfZrN3UcvZ/CGNIDXMXgz2je7KEqS1I9RQ+EI4Piq2gKQ5EJgdVW9savCJEmTN2o3F4cBTwyNP9G0SZLmkVGPFD4G3Jbk0834G4ArOqlIktSbUe8+uijJXwOvbJreUlVf664sSVIfRj19BLAf8GhVvR/YkOTojmqSJPVk1Ndxvgd4N3B+07QP8PGuipIk9WPUI4XTgdcDPwSoqu8CB3ZVlCSpH6OGwhNVVTTdZyfZv7uSJEl9GTUUrk7yZ8BBSd4G3IQv3JGkeWeHdx8lCfCXwLHAo8AxwH+tqhs7rk2SNGE7DIWqqiQ3VNVLAINAkuaxUU8f3ZHk5Z1WIknq3ahPNP888MYk6xncgRQGBxHHdVWYJGnythsKSY6qqu8Ar5lQPZKkHu3oSOEzDHpHfSDJNVX1axOoSZLUkx1dU8jQ8E/PZsVJPpLkkSR3D7UdkuTGJN9svg9u2pPk0iTrkqzd6p3QkqQJ2VEo1DaGR/FR4JSt2lYCN1fVYuDmZhzgtcDi5rMCuGyW25IkjcGOQuGlSR5NsgU4rhl+NMmWJI9ub8Gq+lvgn7ZqPo1nuty+gkEX3NPtH6uBWxk8JHf4rPZEkrTLtntNoaoWjHl7h1XVpmb4IZ55Uc8i4MGh+TY0bZuQJE3MqLekjl3zUNxsT0mRZAWDU0wcddRRY6+rD1MrV/ddgiQBs3ufwjg8PH1aqPl+pGnfCBw5NN8RTduzVNXlVbWsqpYtXLiw02IlaU8z6VC4Dji7GT4b+OxQ+5ubu5BOAH4wdJpJkjQhnZ0+SvJJ4CTg0CQbgPcAqxj0uPpW4AHgjGb2G4BTgXXAj4C3dFWXJGnbOguFqjprG5NOnmHeAs7pqhZJ0mgmffpIkjSHGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpNbefRcgdW1q5eqxrGf9quVjWY80l3mkIElqGQqSpJahIElq9XJNIcl6YAvwFPBkVS1Lcgjwl8AUsB44o6q+30d9krSn6vNI4VVVtbSqljXjK4Gbq2oxcHMzLkmaoLl0+ug04Ipm+ArgDf2VIkl7pr5CoYAvJLk9yYqm7bCq2tQMPwQcNtOCSVYkWZNkzebNmydRqyTtMfp6TuEXq2pjkp8EbkzyjeGJVVVJaqYFq+py4HKAZcuWzTiPJGnn9HKkUFUbm+9HgE8DrwAeTnI4QPP9SB+1SdKebOKhkGT/JAdODwO/AtwNXAec3cx2NvDZSdcmSXu6Pk4fHQZ8Osn09j9RVZ9P8lXg6iRvBR4AzuihNknao008FKrqW8BLZ2j/HnDypOuRJD1jLt2SKknqmaEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKkVl/vaJ43plau7rsESRobjxQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS2fU5BGNI5nUtavWj6GSqTueKQgSWoZCpKk1h57+sjuKSTp2TxSkCS1DAVJUstQkCS1DAVJUmvOXWhOcgrwfmAB8KGqWtVzSdLYjOsGB593UFfm1JFCkgXAnwKvBZYAZyVZ0m9VkrTnmFOhALwCWFdV36qqJ4CrgNN6rkmS9hhz7fTRIuDBofENwM8Pz5BkBbCiGX0syf0Tqm1cDgX+se8iOuK+TUjeO7ZVzan9GrP5um/P7Feys+v4qW1NmGuhsENVdTlwed917Kwka6pqWd91dMF92/3M1/2C+btvXe/XXDt9tBE4cmj8iKZNkjQBcy0UvgosTnJ0kp8AzgSu67kmSdpjzKnTR1X1ZJK3A3/D4JbUj1TVPT2XNW677amvEbhvu5/5ul8wf/et0/1KVXW5fknSbmSunT6SJPXIUJAktQyFHiT5H0m+kWRtkk8nOajvmnZFklOS3J9kXZKVfdczLkmOTPLFJPcmuSfJO/uuaZySLEjytSTX913LOCU5KMmnmv/G7kvyr/quaVySnNf8W7w7ySeT7DvubRgK/bgReHFVHQf8H+D8nuvZafO8a5IngXdV1RLgBOCcebRvAO8E7uu7iA68H/h8VR0LvJR5so9JFgHvAJZV1YsZ3Ixz5ri3Yyj0oKq+UFVPNqO3MngeY3c1b7smqapNVXVHM7yFwY/Lon6rGo8kRwDLgQ/1Xcs4JXk+8K+BDwNU1RNV9X97LWq89gaem2RvYD/gu+PegKHQv/8I/HXfReyCmbommRc/nMOSTAEvA77Scynj8j7g94Cne65j3I4GNgN/3pwa+1CS/fsuahyqaiPwh8B3gE3AD6rqC+PejqHQkSQ3Nef9tv6cNjTP7zM4RXFlf5VqR5IcAFwDnFtVj/Zdz65K8qvAI1V1e9+1dGBv4Hjgsqp6GfBDYF5c50pyMIOj8KOBFwD7J3njuLczpx5em0+q6tXbm57kPwC/Cpxcu/fDIvO6a5Ik+zAIhCur6tq+6xmTE4HXJzkV2Bd4XpKPV9XYf2B6sAHYUFXTR3SfYp6EAvBq4NtVtRkgybXALwAfH+dGPFLoQfMiod8DXl9VP+q7nl00b7smSRIG56bvq6qL+65nXKrq/Ko6oqqmGPx9/a95EghU1UPAg0mOaZpOBu7tsaRx+g5wQpL9mn+bJ9PBRXSPFPrxJ8BzgBsHf7fcWlW/3W9JO2eed01yIvAm4K4kdzZtF1TVDf2VpBH8J+DK5n9SvgW8ped6xqKqvpLkU8AdDE47f40OurywmwtJUsvTR5KklqEgSWoZCpKklqEgSWoZCpKklqGgOS3Jv0hyZ/N5KMnGofGfGGH5k5L8wiy2N5Xk3892viTLklw6rvl3VZJbksy7l9are4aC5rSq+l5VLa2qpcD/BC6ZHm864NuRkxg89TmqKWCHobD1fFW1pqreMcb5pV4YCtrtJPm5JF9KcnuSv0lyeNP+jubdB2uTXNV0YvfbwHnNkcUrt1rPLw0ddXwtyYHAKuCVTdt5zf/h/12SO5rPdMBsPd9J0+8lGHG9w/MfkOTPk9zV1P5rW9V5SpK/GhofXvayJGuaPvb/2zb+vB4bGv71JB9thhcmuSbJV5vPiTv7d6J5pKr8+NktPsCFwH8B/gFY2LT9BoOnqGHQjfBzmuGDhpb53W2s73PAic3wAQye8D8JuH5onv2AfZvhxcCaZnjr+drxEdc7PP97gfcNTTt4qzr3ZtDFwf7N+GXAG5vhQ5rvBcAtwHHN+C0M+t0HeGxoXb8OfLQZ/gTwi83wUQy68+j979lPvx+7udDu5jnAi3mmi5AFDLoRBljLoHuDzwCfGWFdXwYuTnIlcG1VbWjWOWwf4E+SLAWeAn5mTOsd9mqGXpZSVd8fnliDrkQ+D7yu6eZgOYO+swDOSLKCQXAczuBFR2tHqHF6u0uGantekgOq6rHtLKN5zlDQ7ibAPVU10ysWlzN4wcrrgN9P8pLtraiqViVZDZwKfDnJa2aY7TzgYQZv8NoL+H87KnDE9c7WVcDbgX9icLSyJcnRwO8CL6+q7zenhWZ6PeNwXzbD0/cCTqiqHe6T9hxeU9Du5nFgYZr37ibZJ8mLkuwFHFlVXwTeDTyfwambLcCBM60oyQur6q6qei+D3l6PnWH+5wObquppBp3jLWjad3W9w24Ezhla/uAZ5vkSg/cEvI1BQAA8j8H7An6Q5DAGr0SdycNJfrb5Mzp9qP0LDDqPm97u0m0srz2IoaDdzdMMzou/N8nXgTsZ3F20APh4krsY9B55aQ1ew/g54PSZLjQD52bw4qO1wD8zeAPeWuCpJF9Pch7wAeDsZlvHMvgRZob5ZrveYf8dOLhZ5uvAq7be6ap6CriewQ//9U3b15t9/QaD6wNf3saf2cpmmX/gmVNt0Lzvt7m4fS+Di/Law9lLqiSp5ZGCJKllKEiSWoaCJKllKEiSWoaCJKllKEiSWoaCJKn1/wFEJk5dc3UJhQAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" @@ -633,9 +635,33 @@ "\n", "W odróżnieniu od testu dla prób niezależnych, gdzie porównujemy dwie grupy, ten rodzaj testu stosujemy gdy poddajemy analizie tą samą pojedynczą grupę, ale dwukrotnie w czasie.\n", "\n", - "**Przykład**: Porównane zostały wagi przed dietą i po diecie.\n" + "**Przykład**: Porównane zostały wagi przed dietą i po diecie." ] }, + { + "cell_type": "code", + "execution_count": 65, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Średnia waga próbki wag przed dietą: 79.63419999999999\n", + "Średnia waga próbki wag po diecie: 76.5602\n" + ] + } + ], + "source": [ + "print(f'Średnia waga próbki wag przed dietą: {np.mean(weights_before)[0]}')\n", + "print(f'Średnia waga próbki wag po diecie: {np.mean(weights_after)[0]}')" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, { "cell_type": "markdown", "metadata": { @@ -661,7 +687,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 66, "metadata": { "collapsed": false, "pycharm": { @@ -706,7 +732,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 67, "metadata": { "collapsed": false, "pycharm": { @@ -726,18 +752,15 @@ "p: 0.0\n", "Wartość statystyki testowej z próby: [48.30834167]\n", "Wartości statystyk z prób boostrapowych:\n", - "[-0.18332849], [-1.21537352], [1.64628473], [1.06552535], [-0.71420173], ... (i 95 pozostałych)\n", + "[0.520412], [-1.17045922], [0.83736887], [0.65925044], [2.48031265], ... (i 995 pozostałych)\n", "\n", "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEGCAYAAACQO2mwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXrklEQVR4nO3dfbRddX3n8ffHBJ8ABeQaMRBDHYpFhUivqAVtQEUEFG1ZCqMO7VijDo7i6Gi0s8TacRauWT5UaaWppKBFfAZRUIkURG1VLjFAABkoE2sCkijIgzrS4Hf+ODtwuD07OTfcc87Nve/XWmfdvX/7t/f57nDJJ/vpt1NVSJLUy8NGXYAkaeYyJCRJrQwJSVIrQ0KS1MqQkCS1mj/qAqbTnnvuWYsXLx51GZI0PDfc0Pm5//7btfqVV175s6oaa1s+q0Ji8eLFTExMjLoMSRqepUs7Py+7bLtWT/LjrS33dJMkqZUhIUlqZUhIkloZEpKkVoaEJKmVISFJajWwkEiyT5JLk1yX5Nokb2na90iyKsmNzc/dW9Y/qelzY5KTBlWnJKndII8kNgNvq6oDgGcDJyc5AFgOXFJV+wGXNPMPkmQP4FTgWcAhwKltYSJJGpyBhURV3VpVq5vpu4HrgYXAccDZTbezgZf1WP1FwKqqur2q7gBWAUcNqlZJUm9DeeI6yWLgGcD3gQVVdWuz6KfAgh6rLAR+0jW/vmnrte1lwDKARYsWTVPF7RYvv/D+6XWnHTPw75OkURr4heskuwBfBE6pqru6l1XntXgP6dV4VbWiqsaranxsrHX4EUnSdhhoSCTZiU5AnFNVX2qab0uyV7N8L2Bjj1U3APt0ze/dtEmShmiQdzcFOBO4vqo+1LXoAmDL3UonAV/usfo3gCOT7N5csD6yaZMkDdEgjyQOBV4DHJFkTfM5GjgNeGGSG4EXNPMkGU/yCYCquh34S+CK5vO+pk2SNEQDu3BdVd8B0rL4+T36TwB/1jW/Elg5mOokSf3wiWtJUitDQpLUypCQJLUyJCRJrWbVO66HzaevJc12HklIkloZEpKkVoaEJKmVISFJamVISJJaGRKSpFaGhCSplSEhSWplSEiSWhkSkqRWhoQkqdXAxm5KshI4FthYVU9r2j4L7N902Q34RVUt6bHuOuBu4D5gc1WND6pOSVK7QQ7wdxZwOvDJLQ1V9cot00k+CNy5lfUPr6qfDaw6SdI2DfL1pZcnWdxrWZIArwCOGNT3S5IeulFdk3gucFtV3diyvICLk1yZZNkQ65IkdRnV+yROBM7dyvLDqmpDkscDq5L8qKou79WxCZFlAIsWLZr+SiVpDhv6kUSS+cAfAZ9t61NVG5qfG4HzgEO20ndFVY1X1fjY2Nh0lytJc9ooTje9APhRVa3vtTDJzkl23TINHAmsHWJ9kqTGwEIiybnAPwP7J1mf5LXNohOYdKopyROTXNTMLgC+k+Qq4AfAhVX19UHVKUlqN8i7m05saf+THm23AEc30zcDBw2qLklS/3ziWpLUypCQJLUyJCRJrQwJSVIrQ0KS1MqQkCS1MiQkSa0MCUlSK0NCktTKkJAktTIkJEmtDAlJUitDQpLUypCQJLUyJCRJrQwJSVIrQ0KS1GqQry9dmWRjkrVdbe9NsiHJmuZzdMu6RyW5IclNSZYPqkZJ0tYN8kjiLOCoHu0frqolzeeiyQuTzAP+GngxcABwYpIDBlinJKnFwEKiqi4Hbt+OVQ8Bbqqqm6vqXuAzwHHTWpwkqS+juCbxpiRXN6ejdu+xfCHwk6759U1bT0mWJZlIMrFp06bprlWS5rRhh8THgScDS4BbgQ8+1A1W1YqqGq+q8bGxsYe6OUlSl6GGRFXdVlX3VdVvgb+jc2ppsg3APl3zezdtkqQhG2pIJNmra/blwNoe3a4A9kuyb5KHAycAFwyjPknSg80f1IaTnAssBfZMsh44FViaZAlQwDrg9U3fJwKfqKqjq2pzkjcB3wDmASur6tpB1SlJajewkKiqE3s0n9nS9xbg6K75i4B/d3usJGm4fOJaktTKkJAktTIkJEmtDAlJUitDQpLUypCQJLUyJCRJrQwJSVIrQ0KS1MqQkCS1MiQkSa0MCUlSK0NCktTKkJAktTIkJEmtDAlJUitDQpLUamAhkWRlko1J1na1/e8kP0pydZLzkuzWsu66JNckWZNkYlA1SpK2rq+QSPL07dj2WcBRk9pWAU+rqgOB/wO8ayvrH15VS6pqfDu+W5I0Dfo9kvibJD9I8l+SPLafFarqcuD2SW0XV9XmZvZ7wN79lypJGra+QqKqngu8CtgHuDLJp5O88CF+938Gvtb2lcDFSa5MsmxrG0myLMlEkolNmzY9xJIkSd36viZRVTcC/wN4J/CHwEeb6wt/NNUvTfLnwGbgnJYuh1XVwcCLgZOTPG8rda2oqvGqGh8bG5tqKZKkrej3msSBST4MXA8cAbykqn6vmf7wVL4wyZ8AxwKvqqrq1aeqNjQ/NwLnAYdM5TskSdOj3yOJjwGrgYOq6uSqWg1QVbfQObroS5KjgHcAL62qX7X02TnJrlumgSOBtb36SpIGa36f/Y4Bfl1V9wEkeRjwyKr6VVV9qtcKSc4FlgJ7JlkPnErnbqZHAKuSAHyvqt6Q5InAJ6rqaGABcF6zfD7w6ar6+vbuoCRp+/UbEt8EXgDc08w/GrgY+IO2FarqxB7NZ7b0vQU4upm+GTioz7okSQPUb0g8sqq2BARVdU+SRw+ophlp8fIL+1q+7rRjhlGOJA1Fv9ckfpnk4C0zSX4f+PVgSpIkzRT9HkmcAnw+yS1AgCcArxxUUZKkmaGvkKiqK5I8Bdi/abqhqv5tcGVJkmaCfo8kAJ4JLG7WOTgJVfXJgVQlSZoR+gqJJJ8CngysAe5rmgswJCRpFuv3SGIcOKDtCWlJ0uzU791Na+lcrJYkzSH9HknsCVyX5AfAb7Y0VtVLB1KVJGlG6Dck3jvIIiRJM1O/t8B+K8mTgP2q6pvN09bzBlvajqn7yWyfvpa0o+t3qPDXAV8A/rZpWgicP6CaJEkzRL8Xrk8GDgXugvtfQPT4QRUlSZoZ+g2J31TVvVtmksyn85yEJGkW6zckvpXk3cCjmndbfx74yuDKkiTNBP2GxHJgE3AN8HrgIqbwRjpJ0o6p37ubfgv8XfORJM0R/d7d9H+T3Dz508d6K5NsTLK2q22PJKuS3Nj83L1l3ZOaPjcmOan/XZIkTZd+TzeN0xkF9pnAc4GPAv/Qx3pnAUdNalsOXFJV+wGXNPMPkmQPOu/EfhZwCHBqW5hIkganr5Coqp93fTZU1UeAbT4pVlWXA7dPaj4OOLuZPht4WY9VXwSsqqrbq+oOYBX/PmwkSQPW71DhB3fNPozOkcVU3kXRbUFV3dpM/xRY0KPPQuAnXfPrm7ZetS0DlgEsWrRoO0uSJPXS71/0H+ya3gysA17xUL+8qirJQ3reoqpWACsAxsfHfXZDkqZRv3c3HT6N33lbkr2q6tYkewEbe/TZACztmt8buGwaa5Ak9aHf003/bWvLq+pDU/jOC4CTgNOan1/u0ecbwP/qulh9JPCuKXyHJGkaTOXupjfSuS6wEHgDcDCwa/PpKcm5wD8D+ydZn+S1dMLhhUluBF7QzJNkPMknAKrqduAvgSuaz/uaNknSEPV7TWJv4OCquhsgyXuBC6vq1VtbqapObFn0/B59J4A/65pfCazssz5J0gD0eySxALi3a/5eet+VJEmaRfo9kvgk8IMk5zXzL+OBZx0kSbNUv3c3vT/J1+g8bQ3wp1X1w8GVJUmaCfo93QTwaOCuqvorYH2SfQdUkyRphuh3gL9TgXfywG2oO9Hf2E2SpB1Yv9ckXg48A1gNUFW3JGm99XW2WLz8wlGXIEkj1e/ppnurqmheWZpk58GVJEmaKfoNic8l+VtgtySvA76JLyCSpFlvm6ebkgT4LPAU4C5gf+A9VbVqwLVJkkZsmyHRjNR6UVU9nc57HSRJc0S/p5tWJ3nmQCuRJM04/d7d9Czg1UnWAb8EQucg48BBFSZJGr2thkSSRVX1r3ReJypJmmO2dSRxPp3RX3+c5ItV9cdDqEmSNENs65pEuqZ/Z5CFSJJmnm2FRLVMS5LmgG2dbjooyV10jige1UzDAxeuHzPQ6iRJI7XVI4mqmldVj6mqXatqfjO9ZX67AiLJ/knWdH3uSnLKpD5Lk9zZ1ec92/NdkqSHpt9bYKdNVd0ALAFIMg/YAJzXo+u3q+rYIZYmSZpkKu+TGITnA/9SVT8ecR2SpB5GHRInAOe2LHtOkquSfC3JU9s2kGRZkokkE5s2bRpMlZI0R40sJJI8HHgp8Pkei1cDT6qqg4CP0Xleo6eqWlFV41U1PjY2NpBaJWmuGuWRxIuB1VV12+QFVXVXVd3TTF8E7JRkz2EXKElz3ShD4kRaTjUleUIzRDlJDqFT58+HWJskiRHc3QT3v9nuhcDru9reAFBVZwDHA29Mshn4NXBC82Y8SdIQjSQkquqXwOMmtZ3RNX06cPqw65IkPdio726SJM1ghoQkqZUhIUlqZUhIkloZEpKkVoaEJKmVISFJamVISJJaGRKSpFaGhCSp1UiG5ZgrFi+/8P7pdacdM8JKJGn7eCQhSWplSEiSWhkSkqRWhoQkqZUhIUlqZUhIklqNLCSSrEtyTZI1SSZ6LE+Sjya5KcnVSQ4eRZ2SNJeN+jmJw6vqZy3LXgzs13yeBXy8+SlJGpKZfLrpOOCT1fE9YLcke426KEmaS0YZEgVcnOTKJMt6LF8I/KRrfn3T9iBJliWZSDKxadOm7S5m8fILH/SE9HQb9PYlaRBGGRKHVdXBdE4rnZzkeduzkapaUVXjVTU+NjY2vRVK0hw3spCoqg3Nz43AecAhk7psAPbpmt+7aZMkDclIQiLJzkl23TINHAmsndTtAuA/NXc5PRu4s6puHXKpkjSnjerupgXAeUm21PDpqvp6kjcAVNUZwEXA0cBNwK+APx1RrZI0Z40kJKrqZuCgHu1ndE0XcPIw65IkPdhMvgVWkjRihoQkqZUhIUlqZUhIkloZEpKkVoaEJKmVISFJamVISJJaGRKSpFaGhCSplSEhSWplSEiSWhkSkqRWhoQkqZUhIUlqZUhIkloZEpKkVkMPiST7JLk0yXVJrk3ylh59lia5M8ma5vOeYdcpSRrN60s3A2+rqtVJdgWuTLKqqq6b1O/bVXXsCOqTJDWGfiRRVbdW1epm+m7gemDhsOuQJG3bSK9JJFkMPAP4fo/Fz0lyVZKvJXnqVraxLMlEkolNmzYNqlRJmpNGFhJJdgG+CJxSVXdNWrwaeFJVHQR8DDi/bTtVtaKqxqtqfGxsbGD1StJcNJKQSLITnYA4p6q+NHl5Vd1VVfc00xcBOyXZc8hlStKcN4q7mwKcCVxfVR9q6fOEph9JDqFT58+HV6UkCUZzd9OhwGuAa5KsadreDSwCqKozgOOBNybZDPwaOKGqagS1StKcNvSQqKrvANlGn9OB04dTkSSpjU9cS5JaGRKSpFaGhCSplSEhSWplSEiSWhkSkqRWhoQkqZUhIUlqZUhIklqNYliOGW3x8gtHXYIkzRgeSUiSWhkSkqRWhoQkqZUhIUlqZUhIkloZEpKkVoaEJKnVSEIiyVFJbkhyU5LlPZY/Islnm+XfT7J4BGVK0pw39JBIMg/4a+DFwAHAiUkOmNTttcAdVfUfgA8DHxhulZIkGM2RxCHATVV1c1XdC3wGOG5Sn+OAs5vpLwDPT7LV92JLkqbfKIblWAj8pGt+PfCstj5VtTnJncDjgJ9N3liSZcCyZvaeJDdMe8Xt9uxV09Zkxz4mmvL+zgJzbZ/d3x1Vf/+O7rW/T9raCjv82E1VtQJYMYrvTjJRVeOj+O5RmGv7C3Nvn93f2W179ncUp5s2APt0ze/dtPXsk2Q+8Fjg50OpTpJ0v1GExBXAfkn2TfJw4ATggkl9LgBOaqaPB/6xqmqINUqSGMHppuYaw5uAbwDzgJVVdW2S9wETVXUBcCbwqSQ3AbfTCZKZaCSnuUZoru0vzL19dn9ntynvb/wHuiSpjU9cS5JaGRKSpFaGxHbY1rAis0GSlUk2Jlnb1bZHklVJbmx+7j7KGqdTkn2SXJrkuiTXJnlL0z4r9znJI5P8IMlVzf7+RdO+bzMUzk3N0DgPH3Wt0ynJvCQ/TPLVZn627++6JNckWZNkommb0u+0ITFFfQ4rMhucBRw1qW05cElV7Qdc0szPFpuBt1XVAcCzgZOb/66zdZ9/AxxRVQcBS4CjkjybzhA4H26GxLmDzhA5s8lbgOu75mf7/gIcXlVLup6PmNLvtCExdf0MK7LDq6rL6dxZ1q17uJSzgZcNs6ZBqqpbq2p1M303nb9IFjJL97k67mlmd2o+BRxBZygcmEX7C5Bkb+AY4BPNfJjF+7sVU/qdNiSmrtewIgtHVMuwLaiqW5vpnwILRlnMoDSjDj8D+D6zeJ+bUy9rgI3AKuBfgF9U1eamy2z73f4I8A7gt83845jd+wud4L84yZXNEEYwxd/pHX5YDo1GVVWSWXf/dJJdgC8Cp1TVXd3jSs62fa6q+4AlSXYDzgOeMtqKBifJscDGqroyydIRlzNMh1XVhiSPB1Yl+VH3wn5+pz2SmLp+hhWZrW5LshdA83PjiOuZVkl2ohMQ51TVl5rmWb3PAFX1C+BS4DnAbs1QODC7frcPBV6aZB2dU8RHAH/F7N1fAKpqQ/NzI51/CBzCFH+nDYmp62dYkdmqe7iUk4Avj7CWadWcnz4TuL6qPtS1aFbuc5Kx5giCJI8CXkjnOsyldIbCgVm0v1X1rqrau6oW0/l/9h+r6lXM0v0FSLJzkl23TANHAmuZ4u+0T1xvhyRH0zm/uWVYkfePtqLpl+RcYCmdoYVvA04Fzgc+BywCfgy8oqomX9zeISU5DPg2cA0PnLN+N53rErNun5McSOei5Tw6/1j8XFW9L8nv0PmX9h7AD4FXV9VvRlfp9GtON729qo6dzfvb7Nt5zex84NNV9f4kj2MKv9OGhCSplaebJEmtDAlJUitDQpLUypCQJLUyJCRJrQwJ7VCSPK4Z0XJNkp8m2dA1v80RPJMsTfIHU/i+xUn+41T7JRlP8tHp6v9QJbksyfi2e0oPZkhoh1JVP29GtFwCnEFnBM8lzefePjaxFOg7JIDFwDZDYnK/qpqoqjdPY39pJAwJ7fCS/H6SbzWDmH2ja8iBNzfvh7g6yWeagfveALy1OfJ47qTt/GHXUckPm6dVTwOe27S9tTkC+HaS1c1nS+BM7re0650F/Wy3u/8uSf6+eQ/A1Un+eFKdRyX5fNd897ofTzKRrndE9Pjzuqdr+vgkZzXTY0m+mOSK5nPo9v430SxSVX787JAf4L3Afwf+CRhr2l5J5yl4gFuARzTTu3Wt8/aW7X0FOLSZ3oXOU6pLga929Xk08Mhmej9gopme3O/++T63293/A8BHupbtPqnO+cC/Ajs38x+n86QwwB7Nz3nAZcCBzfxlwHgzfU/Xto4HzmqmP01nQDjoPI17/aj/G/sZ/cdRYLWjewTwNDojXELnL8ctwyBfDZyT5Hw6Q4psy3eBDyU5B/hSVa3vHgW2sRNwepIlwH3A707Tdru9gM74QgBU1R3dC6tqc5KvAy9J8gU670h4R7P4FekMCT0f2IvOi7Gu7qPGLd97QFdtj0mySz3w3gnNQYaEdnQBrq2q5/RYdgzwPOAlwJ8nefrWNlRVpyW5EDga+G6SF/Xo9lY6Y1kdROd07f/bVoF9bneqPgO8ic6LoSaq6u4k+wJvB55ZVXc0p5Ee2aukrunu5Q8Dnl1V29wnzR1ek9CO7jfAWJLnQGe47yRPTfIwYJ+quhR4J/BYOqd67gZ27bWhJE+uqmuq6gN0Rvt9So/+jwVurarfAq+hc+TCNGy32yrg5K71e72D+FvAwcDr6AQGwGOAXwJ3JllA5xW7vdyW5PeaP6OXd7VfDPzXru9d0rK+5hBDQju639I5r/6BJFcBa+jcvTQP+Ick19AZ3fOj1XlvwleAl/e6cA2ckmRtkquBfwO+RudUzX1JrkryVuBvgJOa73oKnb+U6dFvqtvt9j+B3Zt1rgIOn7zT1Xlh0FfpBMFXm7armn39EZ3rC99t+TNb3qzzTzxwag7gzcB4c7H8OjoX+TXHOQqsJKmVRxKSpFaGhCSplSEhSWplSEiSWhkSkqRWhoQkqZUhIUlq9f8BW9ItBG2V78MAAAAASUVORK5CYII=", - "image/svg+xml": "\n\n\n \n \n \n \n 2022-05-18T12:02:30.324226\n image/svg+xml\n \n \n Matplotlib v3.5.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEHCAYAAACqbOGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAUZklEQVR4nO3df7DddZ3f8eeLHxUVFJBrSgPsRZuVjVUiGykW7UbtrkhWkday2F3LOIzZTkMVq10j7VTaKTNhpoLSruxipcAuivgDRWBXIwXddUcxIIRfMrBrWIiBZF1XQLewgXf/ON8L55PeJOcm99xzc+7zMXPmfL+f76/3Nzk5r3x/nM83VYUkSVP2GXUBkqT5xWCQJDUMBklSw2CQJDUMBklSw2CQJDX2G9aKkxwJXAEsAgq4pKo+keRc4L3A1m7Wc6rqhm6ZjwBnAk8D76uqr+1sG4cddlhNTk4OZwckab66777e+ytesVuL33rrrX9VVRM7mj60YAC2AR+sqtuSHATcmmRdN+3Cqvrv/TMnWQqcDrwS+AfAN5L8YlU9vaMNTE5Osn79+iGVL0nz1IoVvfebb96txZM8uLPpQzuVVFWbq+q2bvhx4F5g8U4WOQW4qqqerKofAg8Axw+rPknS9ObkGkOSSeA1wHe7prOSbEhyaZJDurbFwEN9iz3MzoNEkjQEQw+GJAcCXwTOrqrHgIuBlwPLgM3Ax2a4vlVJ1idZv3Xr1l0vIEmakaEGQ5L96YXClVX1JYCqerSqnq6qZ4BP8dzpok3AkX2LH9G1NarqkqpaXlXLJyZ2eO1EkrSbhhYMSQJ8Gri3qi7oaz+8b7ZTgbu64WuB05M8L8nRwBLglmHVJ0ma3jDvSjoReDdwZ5Lbu7ZzgHclWUbvFtaNwG8DVNXdSa4G7qF3R9Pqnd2RJEkajqEFQ1X9KZBpJt2wk2XOA84bVk2SpF3zl8+SpIbBIElqDPMaw4Iwueb6Znzj2pUjqkSSZodHDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWrsN+oC9kaTa64fdQmSNDRDO2JIcmSSm5Lck+TuJO/v2g9Nsi7J/d37IV17klyU5IEkG5IcN6zaJEk7NsxTSduAD1bVUuAEYHWSpcAa4MaqWgLc2I0DvBVY0r1WARcPsTZJ0g4MLRiqanNV3dYNPw7cCywGTgEu72a7HHhHN3wKcEX1fAc4OMnhw6pPkjS9ObnGkGQSeA3wXWBRVW3uJj0CLOqGFwMP9S32cNe2mb3I9tcfNq5dOaJKJGn3DP2upCQHAl8Ezq6qx/qnVVUBNcP1rUqyPsn6rVu3zmKlkiQYcjAk2Z9eKFxZVV/qmh+dOkXUvW/p2jcBR/YtfkTX1qiqS6pqeVUtn5iYGF7xkrRADfOupACfBu6tqgv6Jl0LnNENnwF8pa/9X3d3J50A/LTvlJMkaY4M8xrDicC7gTuT3N61nQOsBa5OcibwIHBaN+0G4GTgAeDnwHuGWJskaQeGFgxV9adAdjD5zdPMX8DqYdUjSRqMXWJIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoDBUOSVw27EEnS/DDoEcMnk9yS5N8mefEgCyS5NMmWJHf1tZ2bZFOS27vXyX3TPpLkgST3JXnLDPdDkjRLBgqGqnoD8JvAkcCtST6T5Fd3sdhlwEnTtF9YVcu61w0ASZYCpwOv7Jb5ZJJ9B9wHSdIsGvgaQ1XdD/wn4MPArwAXJflBkn++g/m/Bfz1gKs/Bbiqqp6sqh8CDwDHD1qbJGn2DHqN4dVJLgTuBd4EvK2qfqkbvnCG2zwryYbuVNMhXdti4KG+eR7u2qarZVWS9UnWb926dYabliTtyqBHDP8DuA04tqpWV9VtAFX1I3pHEYO6GHg5sAzYDHxsBsvSbfOSqlpeVcsnJiZmurgkaRf2G3C+lcDfVtXTAEn2AQ6oqp9X1R8MurGqenRqOMmngOu60U30rl9MOaJrkyTNsUGPGL4BPL9v/AVd24wkObxv9FRg6o6la4HTkzwvydHAEuCWma5fkrTnBj1iOKCqnpgaqaonkrxgZwsk+SywAjgsycPAR4EVSZYBBWwEfrtb391JrgbuAbYBq6eOTiRJc2vQYPhZkuOmri0k+WXgb3e2QFW9a5rmT+9k/vOA8wasR5I0JIMGw9nA55P8CAjw94HfGFZRkqTRGSgYqup7SY4BXtE13VdVfze8siRJozLoEQPAa4HJbpnjklBVVwylKknSyAwUDEn+gN7vD24Hpi4KF2AwSNKYGfSIYTmwtKpqmMVIkkZv0N8x3EXvgrMkacwNesRwGHBPkluAJ6caq+rtQ6lKkjQygwbDucMsYr6bXHP9qEuQpDkz6O2q30zyC8CSqvpG96tnn5cgSWNo0G633wt8Afj9rmkx8OUh1SRJGqFBLz6vBk4EHoNnH9rz0mEVJUkanUGD4cmqempqJMl+9H7HIEkaM4MGwzeTnAM8v3vW8+eBrw6vLEnSqAwaDGuArcCd9LrKvoGZPblNkrSXGPSupGeAT3UvSdIYG7SvpB8yzTWFqnrZrFckSRqpmfSVNOUA4F8Ch85+OZKkURvoGkNV/bjvtamqPg6sHG5pkqRRGPRU0nF9o/vQO4KYybMcJEl7iUG/3D/WN7wN2AicNuvVSJJGbtC7kt447EIkSfPDoKeS/v3OplfVBbNTjiRp1GZyV9JrgWu78bcBtwD3D6MoSdLoDBoMRwDHVdXjAEnOBa6vqt8aVmGSpNEYtEuMRcBTfeNPdW2SpDEz6BHDFcAtSa7pxt8BXD6UiiRJIzXoXUnnJfkj4A1d03uq6vvDK0uSNCqDnkoCeAHwWFV9Ang4ydFDqkmSNEKDPtrzo8CHgY90TfsDfzisoiRJozPoEcOpwNuBnwFU1Y+Ag4ZVlCRpdAYNhqeqqui63k7ywuGVJEkapUGD4eokvw8cnOS9wDfwoT2SNJZ2eVdSkgCfA44BHgNeAfznqlo35NokSSOwy2CoqkpyQ1W9CjAMJGnMDXoq6bYkr53JipNcmmRLkrv62g5Nsi7J/d37IV17klyU5IEkG7Z7/oMkaQ4NGgz/GPhOkj/vvrjvTLJhF8tcBpy0Xdsa4MaqWgLc2I0DvBVY0r1WARcPWJckaZbt9FRSkqOq6i+Bt8x0xVX1rSST2zWfAqzohi8Hbqb3+4hTgCu6O5++k+TgJIdX1eaZbleStGd2dcTwZYCqehC4oKoe7H/txvYW9X3ZP8JzHfEtBh7qm+/hru3/k2RVkvVJ1m/dunU3SpAk7cyugiF9wy+bzQ33/y5ihstdUlXLq2r5xMTEbJYkSWLXwVA7GN5djyY5HKB739K1bwKO7JvviK5NkjTHdnW76rFJHqN35PD8bphuvKrqRTPc3rXAGcDa7v0rfe1nJbmK3oXun47L9YXJNdc/O7xx7coRViJJg9lpMFTVvru74iSfpXeh+bAkDwMfpRcIVyc5E3gQOK2b/QbgZOAB4OfAe3Z3u5KkPTPog3pmrKretYNJb55m3gJWD6sWSdLgZvI8BknSAmAwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqWEwSJIaBoMkqbHfKDaaZCPwOPA0sK2qlic5FPgcMAlsBE6rqp+Moj5JWshGecTwxqpaVlXLu/E1wI1VtQS4sRuXJM2x+XQq6RTg8m74cuAdoytFkhauUQVDAV9PcmuSVV3boqra3A0/AiwaTWmStLCN5BoD8Pqq2pTkpcC6JD/on1hVlaSmW7ALklUARx111PArlaQFZiRHDFW1qXvfAlwDHA88muRwgO59yw6WvaSqllfV8omJibkqWZIWjDkPhiQvTHLQ1DDwa8BdwLXAGd1sZwBfmevaJEmjOZW0CLgmydT2P1NVf5zke8DVSc4EHgROG0FtkrTgzXkwVNVfAMdO0/5j4M1zXY8kqTWfbleVJM0DBoMkqWEwSJIao/odw7w3ueb6oa9z49qVs74NSdpTHjFIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhr7jbqAhWxyzfXPDm9cu3KElUjScwyGTv+XtCQtZJ5KkiQ1DAZJUsNgkCQ1Fuw1Bq8pSNL0PGKQJDUMBklSw2CQJDXmXTAkOSnJfUkeSLJm1PVI0kIzr4Ihyb7A7wJvBZYC70qydLRVSdLCMq+CATgeeKCq/qKqngKuAk4ZcU2StKDMt2BYDDzUN/5w1yZJmiN73e8YkqwCVnWjTyS5b5T19DkM+KvdXTjnz2Ilw7dH+7qXcV/H03jsazLIXNPt6y/sbIH5FgybgCP7xo/o2p5VVZcAl8xlUYNIsr6qlo+6jrngvo4n93U87c6+zrdTSd8DliQ5OsnfA04Hrh1xTZK0oMyrI4aq2pbkLOBrwL7ApVV194jLkqQFZV4FA0BV3QDcMOo6dsO8O701RO7reHJfx9OM9zVVNYxCJEl7qfl2jUGSNGIGwx4a9y48klyaZEuSu/raDk2yLsn93fsho6xxNiQ5MslNSe5JcneS93ft47ivByS5Jckd3b7+l6796CTf7T7Ln+tuABkLSfZN8v0k13XjY7mvSTYmuTPJ7UnWd20z/gwbDHtggXThcRlw0nZta4Abq2oJcGM3vrfbBnywqpYCJwCru7/LcdzXJ4E3VdWxwDLgpCQnAOcDF1bVPwR+Apw5uhJn3fuBe/vGx3lf31hVy/puUZ3xZ9hg2DNj34VHVX0L+Ovtmk8BLu+GLwfeMZc1DUNVba6q27rhx+l9iSxmPPe1quqJbnT/7lXAm4AvdO1jsa8ASY4AVgL/qxsPY7qvOzDjz7DBsGcWahcei6pqczf8CLBolMXMtiSTwGuA7zKm+9qdWrkd2AKsA/4c+Juq2tbNMk6f5Y8DvwM8042/hPHd1wK+nuTWrpcI2I3P8Ly7XVV7l6qqJGNza1uSA4EvAmdX1WPp63JgnPa1qp4GliU5GLgGOGa0FQ1Hkl8HtlTVrUlWjLicufD6qtqU5KXAuiQ/6J846GfYI4Y9s8suPMbUo0kOB+jet4y4nlmRZH96oXBlVX2pax7LfZ1SVX8D3AS8Djg4ydR/Fsfls3wi8PYkG+md6n0T8AnGc1+pqk3d+xZ6gX88u/EZNhj2zELtwuNa4Ixu+AzgKyOsZVZ0550/DdxbVRf0TRrHfZ3ojhRI8nzgV+ldU7kJeGc321jsa1V9pKqOqKpJev8+/09V/SZjuK9JXpjkoKlh4NeAu9iNz7A/cNtDSU6mdw5zqguP80Zb0exK8llgBb0eGh8FPgp8GbgaOAp4EDitqra/QL1XSfJ64E+AO3nuXPQ59K4zjNu+vpreRch96f3n8Oqq+q9JXkbvf9WHAt8HfquqnhxdpbOrO5X0oar69XHc126frulG9wM+U1XnJXkJM/wMGwySpIankiRJDYNBktQwGCRJDYNBktQwGCRJDYNB81qSl3Q9Rd6e5JEkm/rGd9kjZpIVSf7JDLY3meRfzXS+JMuTXDRb8++pJDcnWRDPNNbsMxg0r1XVj7ueIpcBv0evR8xl3eupAVaxAhg4GIBJYJfBsP18VbW+qt43i/NLI2MwaK+T5JeTfLPrKOxrfT/3f1/3PIUNSa7qOsP7N8AHuiOMN2y3nl/pO/r4fver0bXAG7q2D3T/0/+TJLd1r6mQ2X6+FX19/Q+y3v75D0zyv7t+9Dck+Rfb1XlSks/3jfcve3GS9el7rsI0f15P9A2/M8ll3fBEki8m+V73OnF3/040ZqrKl6+94gWcC/wH4M+Aia7tN+j94hzgR8DzuuGD+5b50A7W91XgxG74QHq/Fl0BXNc3zwuAA7rhJcD6bnj7+Z4dH3C9/fOfD3y8b9oh29W5H/CXwAu78Yvp/VIX4NDufV/gZuDV3fjNwPJu+Im+db0TuKwb/gy9Tteg96vYe0f9d+xrfrzsXVV7m+cB/4hez5HQ+0Kc6lJ4A3Blki/T67ZjV74NXJDkSuBLVfVwf2+qnf2B/5lkGfA08IuztN5+/4xePz4AVNVP+idW1bYkfwy8LckX6D1b4He6yael173yfsDh9B4YtWGAGqe2u7SvthclObCee1aDFiiDQXubAHdX1eummbYS+KfA24D/mORVO1tRVa1Ncj1wMvDtJG+ZZrYP0Osj6lh6p17/764KHHC9M3UVcBa9hyatr6rHkxwNfAh4bVX9pDtFdMB0JfUN90/fBzihqna5T1pYvMagvc2TwESS10Gvq+wkr0yyD3BkVd0EfBh4Mb3TOI8DB023oiQvr6o7q+p8ej3lHjPN/C8GNlfVM8C76R2hMAvr7bcOWN23/HTP5P0mcBzwXnohAfAi4GfAT5MsoveI2ek8muSXuj+jU/vavw78u77tLtvB8lpgDAbtbZ6hd578/CR3ALfTu+toX+APk9xJr7fMi6r3rIGvAqdOd/EZODvJXUk2AH8H/BG90zBPJ7kjyQeATwJndNs6ht4XMdPMN9P19vtvwCHdMncAb9x+p6v3YJ3r6H35X9e13dHt6w/oXS/49g7+zNZ0y/wZz512A3gfsLy74H0PvQv1kr2rSpJaHjFIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySp8f8AMljUaDsKIbEAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" @@ -754,36 +777,15 @@ { "cell_type": "markdown", "metadata": { - "collapsed": false + "collapsed": false, + "pycharm": { + "name": "#%% md\n" + } }, "source": [ "## Wniosek\n", - "\n", - "???" + "p mniejsze od 0.05 -> odrzucamy hipotezę zerową, że waga nie jest istotnie mniejsza" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [] } ], "metadata": { @@ -810,4 +812,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file