From f2a8b2c167f10611dde29794347d51126192a8c6 Mon Sep 17 00:00:00 2001 From: s444501 Date: Mon, 16 May 2022 18:52:49 +0200 Subject: [PATCH] histogram --- bootstrap-t.ipynb | 86 ++++++++++++++++++++++++++--------------------- 1 file changed, 48 insertions(+), 38 deletions(-) diff --git a/bootstrap-t.ipynb b/bootstrap-t.ipynb index 770549f..8c2b43d 100644 --- a/bootstrap-t.ipynb +++ b/bootstrap-t.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 239, "metadata": { "pycharm": { "name": "#%%\n" @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 240, "metadata": { "pycharm": { "name": "#%%\n" @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 241, "outputs": [], "source": [ "def t_stat_single(sample, population_mean):\n", @@ -82,7 +82,7 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 242, "outputs": [], "source": [ "def t_stat_ind(sample_1, sample_2):\n", @@ -99,7 +99,7 @@ }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 243, "outputs": [], "source": [ "def t_stat_dep(sample_1, sample_2):\n", @@ -118,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 244, "outputs": [], "source": [ "def bootstrap_one_sample():\n", @@ -133,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 245, "outputs": [], "source": [ "def bootstrap_independent():\n", @@ -148,7 +148,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 246, "outputs": [], "source": [ "def bootstrap_dependent():\n", @@ -163,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 247, "metadata": { "pycharm": { "name": "#%%\n" @@ -173,25 +173,28 @@ "source": [ "def independent_t_test(data, columns, alpha=0.05):\n", " t_stat_sum = 0\n", + " t_stat_list = []\n", " for sample in generate_bootstraps(data):\n", - " t_stat_sum += t_stat_ind(sample[columns[0]], sample[columns[1]])\n", - "\n", + " stat = t_stat_ind(sample[columns[0]], sample[columns[1]])\n", + " t_stat_list.append(stat)\n", + " t_stat_sum += stat\n", " data_size = data.shape[0]\n", " t_stat = t_stat_sum / data_size\n", " df = 2 * data_size - 2\n", " cv = t.ppf(1.0 - alpha, df)\n", " p = (1.0 - t.cdf(abs(t_stat), df)) * 2.0\n", - " return t_stat, df, cv, p" + " return t_stat, df, cv, p, t_stat_list" ] }, { "cell_type": "code", - "execution_count": 148, + "execution_count": 248, "outputs": [], "source": [ "def make_decision(data, columns, alpha=0.05):\n", - " t_stat, df, cv, p = independent_t_test(data, columns, alpha)\n", + " t_stat, df, cv, p, stats = independent_t_test(data, columns, alpha)\n", " print(f't: {t_stat}, df: {df}, cv: {cv}, p: {p}\\n')\n", + " draw_distribution(stats)\n", " if abs(t_stat) <= cv:\n", "\t print('Accept null hypothesis that the means are equal.')\n", " else:\n", @@ -210,27 +213,18 @@ }, { "cell_type": "code", - "execution_count": 149, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAMkElEQVR4nO3dfYxl9V3H8fenrKBttUCZElyIu7GgISaluCKG9EFotO0aF7USGqOblrim0kqpD12MkSb+s2i1YmJqVpZmTRoeRCJYfEIEGxO77WyLwvIQVrqUpQtMY1ufYhH79Y85mx2WGeayM3fufmfer4TMPeeeu+f3yyXv/ObM3DOpKiRJ/bxi0gOQJB0bAy5JTRlwSWrKgEtSUwZckppat5InO+2002rDhg0reUpJam/v3r1fqaqpo/evaMA3bNjA9PT0Sp5SktpL8sR8+72EIklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU2t6CcxpePVhu13TezcB3Zsnti51ZsrcElqyhW4jiuTXAlL3bgCl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNTVSwJNcnWRfkgeT3JTkW5NsTLInyf4ktyQ5cdyDlSQdsWjAk6wHfgnYVFXfB5wAXA5cB3ysql4PfBW4YpwDlSS90KiXUNYB35ZkHfBK4BBwMXDb8Pxu4NJlH50kaUGLBryqngI+CnyJ2XB/HdgLfK2qnh8OOwisn+/1SbYlmU4yPTMzszyjliSNdAnlFGALsBH4TuBVwNtHPUFV7ayqTVW1aWpq6pgHKkl6oVEuobwN+GJVzVTV/wK3AxcBJw+XVADOBJ4a0xglSfMYJeBfAi5M8sokAS4BHgLuBd41HLMVuGM8Q5QkzWeUa+B7mP1h5eeBB4bX7AQ+DHwoyX7gtcCuMY5TknSUdYsfAlV1LXDtUbsfBy5Y9hFJkkbiJzElqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpkb6PXBJ47Nh+10TOe+BHZsncl4tH1fgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTXk3Qr3IpO6OJ+nlcQUuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLU1EgBT3JyktuSPJLk4SQ/lOTUJHcneWz4esq4BytJOmLUFfj1wF9X1fcCbwAeBrYD91TV2cA9w7YkaYUsGvAkrwHeDOwCqKrnquprwBZg93DYbuDS8QxRkjSfUVbgG4EZ4BNJvpDkhiSvAk6vqkPDMU8Dp8/34iTbkkwnmZ6ZmVmeUUuSRgr4OuB84ONV9UbgvzjqcklVFVDzvbiqdlbVpqraNDU1tdTxSpIGowT8IHCwqvYM27cxG/RnkpwBMHx9djxDlCTNZ9GAV9XTwJNJvmfYdQnwEHAnsHXYtxW4YywjlCTNa9Q/avwB4JNJTgQeB97DbPxvTXIF8ARw2XiGKEmaz0gBr6r7gU3zPHXJso5GkjQyP4kpSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlPrJj0ASZOxYftdEzv3gR2bJ3bu1cQVuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmho54ElOSPKFJJ8atjcm2ZNkf5Jbkpw4vmFKko72clbgVwEPz9m+DvhYVb0e+CpwxXIOTJL00kYKeJIzgc3ADcN2gIuB24ZDdgOXjmF8kqQFjLoC/33g14BvDtuvBb5WVc8P2weB9cs7NEnSS1k04El+DHi2qvYeywmSbEsynWR6ZmbmWP4JSdI8RlmBXwT8eJIDwM3MXjq5Hjg5yeF7qZwJPDXfi6tqZ1VtqqpNU1NTyzBkSRKMEPCquqaqzqyqDcDlwN9X1c8A9wLvGg7bCtwxtlFKkl5kKb8H/mHgQ0n2M3tNfNfyDEmSNIqXdTvZqroPuG94/DhwwfIPSZI0Cj+JKUlN+QcdjmOTvOG+pOOfK3BJasqAS1JTBlySmjLgktSUP8RchD9IlHS8cgUuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSn/oIOkFTepP5RyYMfmiZx3XFyBS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1NSiAU9yVpJ7kzyUZF+Sq4b9pya5O8ljw9dTxj9cSdJho6zAnwd+uarOBS4ErkxyLrAduKeqzgbuGbYlSStk0YBX1aGq+vzw+D+Ah4H1wBZg93DYbuDSMY1RkjSPl3UNPMkG4I3AHuD0qjo0PPU0cPoCr9mWZDrJ9MzMzFLGKkmaY+SAJ3k18GfAB6vq3+c+V1UF1Hyvq6qdVbWpqjZNTU0tabCSpCNGCniSb2E23p+sqtuH3c8kOWN4/gzg2fEMUZI0n1F+CyXALuDhqvq9OU/dCWwdHm8F7lj+4UmSFjLKn1S7CPhZ4IEk9w/7fh3YAdya5ArgCeCysYxQkjSvRQNeVf8IZIGnL1ne4UiSRuUnMSWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJampUT5KL0mrwobtd03kvAd2bB7Lv+sKXJKaMuCS1FSbSyiT+tZHko5XrsAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLU1JICnuTtSR5Nsj/J9uUalCRpcccc8CQnAH8IvAM4F3h3knOXa2CSpJe2lBX4BcD+qnq8qp4Dbga2LM+wJEmLWbeE164HnpyzfRD4waMPSrIN2DZs/meSR5dwzpV2GvCVSQ9iQtbq3J332rIi8851S/4nvmu+nUsJ+Eiqaiewc9znGYck01W1adLjmIS1OnfnvbZ0n/dSLqE8BZw1Z/vMYZ8kaQUsJeCfA85OsjHJicDlwJ3LMyxJ0mKO+RJKVT2f5P3A3wAnADdW1b5lG9nxoeWln2WyVufuvNeW1vNOVU16DJKkY+AnMSWpKQMuSU2t6YAnuTHJs0kenLPvI0meSnL/8N875zx3zXDbgEeT/OhkRr1088172P+BJI8k2Zfkt+fsX7XzTnLLnPf6QJL75zy3KuYNC879vCSfGeY+neSCYX+S/MEw939Jcv7kRr40C8z7DUn+KckDSf4iyXfMea7Xe15Va/Y/4M3A+cCDc/Z9BPiVeY49F/hn4CRgI/CvwAmTnsMyzvuHgb8DThq2X7cW5n3U878L/OZqm/dLvOd/C7xjePxO4L45j/8KCHAhsGfS41/meX8OeMvw+L3Ab3V9z9f0CryqPg3824iHbwFurqpvVNUXgf3M3k6gnQXm/T5gR1V9Yzjm2WH/ap83MLvqBC4Dbhp2rZp5w4JzL+Dw6vM1wJeHx1uAP6lZnwFOTnLGyox0eS0w73OATw+P7wZ+anjc7j1f0wF/Ce8fvnW8Mckpw775bh2wfuWHNjbnAG9KsifJPyT5gWH/ap/3YW8Cnqmqx4bttTDvDwK/k+RJ4KPANcP+1T73fRy5b9NPc+QDie3mbcBf7OPAdwPnAYeY/bZ6LVgHnMrst8y/Ctw6rErXindzZPW9VrwPuLqqzgKuBnZNeDwr5b3ALybZC3w78NyEx3PMxn4vlG6q6pnDj5P8MfCpYXO13zrgIHB7zV4M/GySbzJ7o5/VPm+SrAN+Evj+ObtX/byBrcBVw+M/BW4YHq/quVfVI8CPACQ5B9g8PNVu3q7Aj3LUtb6fAA7/9PpO4PIkJyXZCJwNfHalxzdGf87sDzIP/099IrN3aVvt8wZ4G/BIVR2cs28tzPvLwFuGxxcDhy8f3Qn83PDbKBcCX6+qQ5MY4Dgked3w9RXAbwB/NDzV7j1f0yvwJDcBbwVOS3IQuBZ4a5LzmP0BzwHgFwCqal+SW4GHgOeBK6vq/yYw7CVbYN43AjcOv271HLB1WI2v6nlX1S5m7+Pzgssnq+n9hgXf858Hrh++A/kfjtz2+S+Z/U2U/cB/A+9Z8QEvkwXm/eokVw6H3A58Anq+536UXpKa8hKKJDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1NT/A059g8y1NrEyAAAAAElFTkSuQmCC\n" - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "execution_count": 249, + "outputs": [], "source": [ - "def draw_distribution():\n", - " \"\"\"Funkcja rysuje rozkład statystyki testowej\"\"\"\n", - " # Losowe dane bo nie jestem pewien co tu dać teraz\n", - " dummy = np.random.normal(170, 10, 500)\n", - " plt.hist(dummy)\n", - " plt.show()\n", - "draw_distribution() # To trzeba wywalić potem" + "def draw_distribution(stats): # To powinno być zdefiniowane przed make decision w sumie\n", + " \"\"\"\n", + " Funkcja rysuje rozkład statystyki testowej\n", + " stats: lista statystyk testowych\n", + " \"\"\"\n", + " plt.hist(stats)\n", + " plt.xlabel('Test statistic value')\n", + " plt.ylabel('Frequency')\n", + " plt.show()" ], "metadata": { "collapsed": false, @@ -241,7 +235,7 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 250, "outputs": [ { "name": "stdout", @@ -293,14 +287,30 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 251, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "t: 6.914346193374633, df: 998, cv: 1.6463818766348755, p: 8.378631122241131e-12\n", - "\n", + "t: 6.929903381575467, df: 998, cv: 1.6463818766348755, p: 7.544853630747639e-12\n", + "\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAATd0lEQVR4nO3dfbRldX3f8feHh4jIg1CuZKqQawyJUpUJGWgiMWI0lUh9oBoNbQzLJk6aaI0kaZ3Yrkqy6lq4WiE1bWxwiaBBjYoSBDQi9TmtOCDPg9EmQwqMMEZawCQS4Ns/9h45ztxz59zL3Xffmd/7tdZZs/dvP3053Pu5+/zO3r+dqkKS1I59xi5AkrS6DH5JaozBL0mNMfglqTEGvyQ1xuCXpMYMFvxJjkry6SS3JLk5ya/37WcluSPJdf3rhUPVIEnaVYa6jj/JOmBdVV2b5GDgGuClwCuA+6vqPw9yYEnSovYbasdVtQ3Y1k/fl2QL8MTl7OuII46o+fn5FaxOkvZ+11xzzTeram7n9sGCf1KSeeBHgS8BJwGvS/KLwGbgN6vqnsW2n5+fZ/PmzYPXKUl7kyS3LdQ++Je7SQ4CLgbeUFX3Au8AngKsp/tE8LYp221MsjnJ5u3btw9dpiQ1Y9DgT7I/XehfVFUfAaiqu6rqoap6GHgncOJC21bVeVW1oao2zM3t8klFkrRMQ17VE+BdwJaqOmeifd3EaqcBNw1VgyRpV0P28Z8EvAq4Mcl1fdubgNOTrAcK2Ar8yoA1SJJ2MuRVPV8AssCiK4Y6piRp97xzV5IaY/BLUmMMfklqjMEvSY1ZlTt3paHNb7p8lONuPfvUUY4rPRqe8UtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGuODWKRHYawHwIAPgdHyecYvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYMFvxJjkry6SS3JLk5ya/37YcnuTLJ1/p/DxuqBknSroY8438Q+M2qOhb4ceC1SY4FNgFXVdUxwFX9vCRplQwW/FW1raqu7afvA7YATwReAlzYr3Yh8NKhapAk7WpV+viTzAM/CnwJOLKqtvWLvgEcuRo1SJI6gwd/koOAi4E3VNW9k8uqqoCast3GJJuTbN6+ffvQZUpSMwYN/iT704X+RVX1kb75riTr+uXrgLsX2raqzquqDVW1YW5ubsgyJakpQ17VE+BdwJaqOmdi0aXAGf30GcCfDFWDJGlXQz5z9yTgVcCNSa7r294EnA18MMkvAbcBrxiwBknSTgYL/qr6ApApi5831HElSYvzzl1JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUmP3GLkB7j/lNl49dgqQZeMYvSY0x+CWpMQa/JDVmsOBPcn6Su5PcNNF2VpI7klzXv1441PElSQubKfiTPGMZ+74AOGWB9nOran3/umIZ+5UkPQqznvH/QZKrk/xakkNn2aCqPgd8a/mlSZKGMFPwV9WzgX8BHAVck+R9SX5mmcd8XZIb+q6gw5a5D0nSMs3cx19VXwP+PfBG4DnA25PcmuSfLeF47wCeAqwHtgFvm7Ziko1JNifZvH379iUcQpK0mFn7+J+Z5FxgC/DTwIuq6mn99LmzHqyq7qqqh6rqYeCdwImLrHteVW2oqg1zc3OzHkKStBuznvH/PnAtcFxVvbaqrgWoqjvpPgXMJMm6idnTgJumrStJGsasQzacCvxtVT0EkGQf4ICq+puqeu9CGyR5P3AycESS24E3AycnWQ8UsBX4lUdVvSRpyWYN/k8Bzwfu7+cPBD4JPGvaBlV1+gLN71pSdZKkFTdrV88BVbUj9OmnDxymJEnSkGYN/m8nOX7HTJIfA/52mJIkSUOatavnDcCHktwJBPh+4JVDFSVJGs5MwV9VX07yVOBH+qavVtXfD1eWJGkoS3kQywnAfL/N8UmoqvcMUpUkaTAzBX+S99LdcXsd8FDfXIDBL0l7mFnP+DcAx1ZVDVmMJGl4s17VcxPdF7qSpD3crGf8RwC3JLka+M6Oxqp68SBVSZIGM2vwnzVkEZKk1TPr5ZyfTfIDwDFV9akkBwL7DluaJGkIsw7L/Brgw8Af9k1PBC4ZqCZJ0oBm/XL3tcBJwL3w3YeyPGGooiRJw5k1+L9TVQ/smEmyH911/JKkPcyswf/ZJG8CHts/a/dDwMeGK0uSNJRZg38TsB24ke7hKVewhCdvSZLWjlmv6tnxjNx3DluOJGlos47V85cs0KdfVT+44hVJkga1lLF6djgA+Dng8JUvR5I0tJn6+Kvqryded1TV79E9gF2StIeZtavn+InZfeg+ASxlLH9J0hoxa3i/bWL6QWAr8IoVr0YrYn7T5WOXoFUw1v/nrWf7YX9PN+tVPc8duhBJ0uqYtavnNxZbXlXnrEw5kqShLeWqnhOAS/v5FwFXA18boihJ0nBmDf4nAcdX1X0ASc4CLq+qXxiqMEnSMGYdsuFI4IGJ+Qf6NknSHmbWM/73AFcn+Wg//1LgwkEqkiQNataret6S5OPAs/umV1fVV4YrS5I0lFm7egAOBO6tqv8C3J7kyQPVJEka0KyPXnwz8Ebgt/um/YE/GqooSdJwZj3jPw14MfBtgKq6Ezh4qKIkScOZNfgfqKqiH5o5yeOGK0mSNKRZg/+DSf4QeHyS1wCfwoeySNIeabdX9SQJ8MfAU4F7gR8B/kNVXTlwbZKkAew2+KuqklxRVc8AZg77JOcD/xS4u6qe3rcdTvdHZJ5+hM+qumcZdUuSlmnWrp5rk5ywxH1fAJyyU9sm4KqqOga4qp+XJK2iWYP/HwP/K8n/TnJDkhuT3LDYBlX1OeBbOzW/hEfu+L2Q7g5gSdIqWrSrJ8nRVfVXwAtW6HhHVtW2fvobON6PJK263fXxX0I3KudtSS6uqpet1IH77w5q2vIkG4GNAEcfffRKHVaSmre7rp5MTP/gChzvriTrAPp/7562YlWdV1UbqmrD3NzcChxakgS7D/6aMr1clwJn9NNnAH+yAvuUJC3B7rp6jktyL92Z/2P7afr5qqpDpm2Y5P3AycARSW4H3gycTXcz2C8Bt+ED2yVp1S0a/FW173J3XFWnT1n0vOXuU5L06C1lWGZJ0l7A4Jekxhj8ktSYWZ+5K0kAzG+6fLRjbz371NGOvTfxjF+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1Zr8xDppkK3Af8BDwYFVtGKMOSWrRKMHfe25VfXPE40tSk+zqkaTGjBX8BXwyyTVJNo5UgyQ1aayunp+sqjuSPAG4MsmtVfW5yRX6PwgbAY4++ugxapSkvdIoZ/xVdUf/793AR4ETF1jnvKraUFUb5ubmVrtESdprrXrwJ3lckoN3TAP/BLhpteuQpFaN0dVzJPDRJDuO/76q+sQIdUhSk1Y9+KvqL4DjVvu4kqSOl3NKUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWa/sQsY2vymy0c79tazTx3t2JI0jWf8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1Zq+/jn9MY95DIO2NWvydGuJ+IM/4JakxBr8kNcbgl6TGGPyS1JhRgj/JKUm+muTrSTaNUYMktWrVgz/JvsB/A34WOBY4Pcmxq12HJLVqjDP+E4GvV9VfVNUDwAeAl4xQhyQ1aYzgfyLwfybmb+/bJEmrYM3ewJVkI7Cxn70/yVfHrGeKI4Bvjl3EMlj36ttTa7fu1bVL3Xnro9rfDyzUOEbw3wEcNTH/pL7te1TVecB5q1XUciTZXFUbxq5jqax79e2ptVv36lqtusfo6vkycEySJyf5PuDngUtHqEOSmrTqZ/xV9WCS1wF/CuwLnF9VN692HZLUqlH6+KvqCuCKMY69wtZ0V9QirHv17am1W/fqWpW6U1WrcRxJ0hrhkA2S1BiDfwZJDkhydZLrk9yc5Hf69ov6oSduSnJ+kv3HrnVni9T+rr7thiQfTnLQ2LVOmlb3xPK3J7l/rPqmWeT9viDJXya5rn+tH7nU77FI3UnyliR/nmRLktePXevOFqn98xPv951JLhm51O+xSN3PS3JtX/cXkvzQih+8qnzt5gUEOKif3h/4EvDjwAv7ZQHeD/zq2LUuofZDJtY5B9g0dq2z1N3PbwDeC9w/dp1LeL8vAF4+dn3LqPvVwHuAffplTxi71qX8rEysczHwi2PXOuN7/ufA0/r2XwMuWOlje8Y/g+rsOLvcv39VVV3RLyvgarp7EtaURWq/F7ozOuCxwJr6smda3f1YT/8J+LejFbeIaXWPWNJMFqn7V4HfraqH+/XuHqnEqXb3nic5BPhp4JLVr266Reou4JC+/VDgzpU+tsE/oyT7JrkOuBu4sqq+NLFsf+BVwCdGKm9R02pP8m7gG8BTgd8fr8KFTan7dcClVbVt1OIWscjPylv6rrVzkzxmvAoXNqXupwCvTLI5yceTHDNqkVMs9vsJvBS4asfJzloype5fBq5Icjtdrpy90sc1+GdUVQ9V1Xq6s/oTkzx9YvEfAJ+rqs+PUtxuTKu9ql4N/ENgC/DK8Spc2AJ1/xTwc6zBP1KTprzfv033B/YE4HDgjeNVuLApdT8G+Lvq7iZ9J3D+iCVOtZvfz9PpumLXnCl1nwm8sKqeBLybrit2RRn8S1RV/xf4NHAKQJI3A3PAb4xY1kx2rr1ve4huhNSXjVTWbk3U/Vzgh4CvJ9kKHJjk6yOWtqjJ97uqtvUf7b9D98t84qjFLWKnn5PbgY/0iz4KPHOksmaywO/nEXTv9Zp+SvtE3T8LHDfxieWPgWet9PEM/hkkmUvy+H76scDPALcm+WXgBcDpO/pA15optX91x5UCfR//i4FbRytyAVPqvqaqvr+q5qtqHvibqlr5Kx4ehUV+Vtb1baHrerhprBoXMq1uun7x5/arPYfui8c1ZZHaAV4OXFZVfzdSeVNNqXsLcGiSH+5X29G2otbs6JxrzDrgwv6LxX2AD1bVZUkeBG4D/mf3+8xHqup3R6xzIbvUTnf28/n+S68A19N9ibeWLPiej1zTLKb9rPyPJHN07/d1wL8ascaFTKv7C8BFSc4E7qfrf15rFvtZ+XkG6CNfIdPe89cAFyd5GLgH+JcrfWDv3JWkxtjVI0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfa0KSfzAxkuI3ktwxMf99M2x/cpKZb3RJMp/kny91vSQbkrx9pdZ/tJJ8Jske92xZjcvg15pQVX9dVev729f/O3DujvmqemCGXZzM0u5wnAd2G/w7r1dVm6tqsaGJl7q+tOoMfq1ZSX4syWeTXJPkTyfufn19klv6Ac8+kGSe7oaoM/tPCM/eaT/Pmfj08JUkB9Pd1PPsvu3M/kz98+nGQb924tPDzuudnOSyJex3cv2Dkrw7yY197S/bqc5TknxoYn5y23ekGyhtl2cTTKx//8T0y5Nc0E/PJbk4yZf710nL/X+ivcRyxnL25WvIF3AW8G+APwPm+rZXAuf303cCj+mnHz+xzW9N2d/HgJP66YPo7lg/me5W/h3rHAgc0E8fA2zup3de77vzM+53cv23Ar83seywnercD/gr4HH9/DuAX+inD+//3Rf4DPDMfv4zwIZ++v6Jfb2cfhx34H3AT/bTRwNbxv5/7Gvcl0M2aK16DPB04Mp+OIx9gR1DMd9AN4zAJcw2xvoXgXOSXEQ3rMbt/T4n7Q/813RPxnoI+OGdV1jmfic9n24IAQCq6p7JhVX1YJJPAC9K8mHgVB557sArkmyk++OwDjiW7n2YxfOBYydqOyTJQfXIWPBqjMGvtSrAzVX1EwssOxX4KeBFwL9L8ozFdlRVZye5nO6JaV9M8oIFVjsTuAs4jq4LdLeDes2436X6AN0zB75F96njviRPBn4LOKGq7um7cA5YqKSJ6cnl+9A9kWrNDVSmcdjHr7XqO8Bckp+A7mE3Sf5Rkn2Ao6rq03Rj2h9K181yH3DwQjtK8pSqurGq3gp8mW5c/J3XPxTYVt0oq6+i+4TBCux30pXAaye2P2yBdT4LHA+8hu6PAHRPY/o28P+SHEk3dO9C7krytP49Om2i/ZPAv5447vop26sRBr/Wqofp+qnfmuR6uhEtn0UXyH+U5EbgK8DbqxvL/GPAaQt9uQu8IclNSW4A/h74OF03yUPpHnR9Jt3DdM7oj/VUuqBlgfWWut9J/xE4rN/meh4Z7vi7qns+wmV04X5Z33Z9/996K11//RenvGeb+m3+jEe6xQBeD2zov1C+hbU3MqhWmaNzSlJjPOOXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNeb/A8xCTZ43e5wtAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Reject the null hypothesis that the means are equal.\n", "Reject the null hypothesis that the means are equal.\n" ]