Add possibility of running GA with decision tree

Decision tree will be used to give player movement targets.
This commit is contained in:
Michał Czekański 2020-05-24 14:04:10 +02:00
parent c88965de38
commit 80946a4246
2 changed files with 301 additions and 0 deletions

267
src/AI/GA_With_DT.py Normal file
View File

@ -0,0 +1,267 @@
import random
from datetime import datetime
from typing import List
import numpy
import src.AI.DecisionTrees.InductiveDecisionTreeLearning as DT
import src.AI.DecisionTrees.projectSpecificClasses.Examples as Examples
from src.AI.Affinities import Affinities
from src.AI.DecisionTrees.DecisionTree import DecisionTree
from src.AI.DecisionTrees.projectSpecificClasses.DTEntities.DTSurvivalInteractable import DTSurvivalInteractable
from src.AI.DecisionTrees.projectSpecificClasses.DTPlayerStats import DTPlayerStats
from src.AI.DecisionTrees.projectSpecificClasses.SurvivalAttributesDefinitions import \
SurvivalAttributesDefinitions as AttrDefs
from src.AI.DecisionTrees.projectSpecificClasses.SurvivalClassification import SurvivalClassification
from src.AI.DecisionTrees.projectSpecificClasses.SurvivalDTExample import SurvivalDTExample
from src.entities.Enums import Classifiers
from src.entities.Player import Player
from src.game.Map import Map
def geneticAlgorithmWithDecisionTree(map, iter, solutions, mutationAmount=0.05):
"""
This is fusion of genetic algorithm and decision tree. Decision tree is giving travel goals for player.
:param map: Map with all entities
:param iter: Generations count
:param solutions: Solutions per generation
:param mutationAmount: Mutation strength
"""
entityPickingDecisionTree = DT.inductiveDecisionTreeLearning(Examples.examples,
AttrDefs.allAttributesDefinitions,
SurvivalClassification.FOOD,
SurvivalClassification)
print("\nDecision tree: \n")
DecisionTree.printTree(entityPickingDecisionTree, 0)
print()
# Based on 4 weights, that are affinities tied to the player
weightsCount = 4
# Initialize the first population with random values
initialPopulation = numpy.random.uniform(low=0.0, high=1.0, size=(solutions, weightsCount))
population = initialPopulation
maps = []
# Set the RNG seed for this GA
# 125 is good for weak start
random.seed(125)
# Begin
for i in range(iter):
print("\nRunning {} generation...".format(i + 1))
# random.seed(random.randrange(0, 100000))
fitness = []
for player in population:
fitness.append(doSimulation(player, map, entityPickingDecisionTree))
parents = selectMatingPool(population, fitness, int(solutions / 2))
print("Best fitness: {}".format(max(fitness)))
offspring = mating(parents, solutions, mutationAmount)
print("Best offspring: ", offspring[0])
writeResults(i, max(fitness), offspring[0])
population = offspring
def selectMatingPool(population, fitness, count):
"""
Pick best players from a population.
:param population: Entire population pool
:param fitness: Fitnesses coresponding to each player
:param count: Selection count
"""
result = []
bestIdxs = []
for i in range(count):
bestIdx = (numpy.where(fitness == numpy.max(fitness)))[0][0]
fitness[bestIdx] = 0
bestIdxs.append(bestIdx)
for id in bestIdxs:
result.append(population[id])
return result
def mating(parents, offspringCount, mutationAmount):
"""
Generate an offspring from parents.
:param parents: Array of parents weights
:param offspringCount: Offspring count
:param mutationAmount: How strong is the mutation of the genes
:return: An array of new offspring
"""
offspring = []
for i in range(offspringCount):
parent1 = i % len(parents)
parent2 = (i + 1) % len(parents)
offspring.append(crossover(parents[parent1], parents[parent2]))
offspring = mutation(offspring, mutationAmount)
return offspring
def crossover(genes1, genes2):
"""
Apply a crossover between two genes.
Currently, it calculates the median.
:param genes1: An array of genes
:param genes2: An array of genes
:return: Array of resulted genes
"""
result = []
for gene1, gene2 in zip(genes1, genes2):
result.append((gene1 + gene2) / 2)
return result
def mutation(offspring, mutationAmount):
"""
Apply a random offset to a random gene.
:param offspring: Array of offspring
:param mutationAmount: How strong the mutation is
:return: Offspring after mutation
"""
for player in offspring:
randomGeneIdx = random.randrange(0, len(player))
player[randomGeneIdx] = player[randomGeneIdx] + random.uniform(-1.0, 1.0) * mutationAmount
return offspring
def doSimulation(weights, map, decisionTree):
"""
Runs the simulation. Returns fitness.
:param weights: A list of weights for players.
:param map: Map object
"""
player = Player((6, 2), map.tileSize, Affinities(weights[0], weights[1], weights[2], weights[3]))
player.disableMovementTime()
while player.alive:
if player.movementTarget is None:
target = pickEntity(player, map, decisionTree)
player.gotoToTarget(target, map)
player.update()
fitness = player.movePoints
player.kill()
del player
map.respawn()
return fitness
def pickEntity(player, map, entityPickingDecisionTree: DecisionTree):
"""
Select an entity to become the next goal for the player. The goal is specified by decision tree.
:param entityPickingDecisionTree:
:param player: Player object
:param map: Map object
:type map: Map
:type player: Player
"""
foods = map.getInteractablesByClassifier(Classifiers.FOOD)
waters = map.getInteractablesByClassifier(Classifiers.WATER)
rests = map.getInteractablesByClassifier(Classifiers.REST)
playerStats = DTPlayerStats.dtStatsFromPlayerStats(player.statistics)
# Get foods sorted by distance from player
dtFoods: List[DTSurvivalInteractable] = []
for food in foods:
dtFood = DTSurvivalInteractable.dtInteractableFromInteractable(food, player.x, player.y)
dtFoods.append(dtFood)
dtFoods.sort(key=lambda x: x.distanceFromPlayer.value)
# Get waters sorted by distance from player
dtWaters: List[DTSurvivalInteractable] = []
for water in waters:
dtWater = DTSurvivalInteractable.dtInteractableFromInteractable(water, player.x, player.y)
dtWaters.append(dtWater)
dtWaters.sort(key=lambda x: x.distanceFromPlayer.value)
# Get rest places sorted by distance from player
dtRestPlaces: List[DTSurvivalInteractable] = []
for rest in rests:
dtRest = DTSurvivalInteractable.dtInteractableFromInteractable(rest, player.x, player.y)
dtRestPlaces.append(dtRest)
dtRestPlaces.sort(key=lambda x: x.distanceFromPlayer.value)
currentSituation = SurvivalDTExample(None, playerStats.hungerAmount, playerStats.thirstAmount,
playerStats.staminaAmount,
dtFoods[0].distanceFromPlayer, dtWaters[0].distanceFromPlayer,
dtRestPlaces[0].distanceFromPlayer)
treeDecision, choice = pickEntityAfterTreeDecision(currentSituation, entityPickingDecisionTree, dtFoods, dtRestPlaces, dtWaters)
# If the choice happens to be the same as the last one pick something else.
if choice == map.getEntityOnCoord(player.getFacingCoord()):
if treeDecision == SurvivalClassification.FOOD:
dtFoods.remove(dtFoods[0])
elif treeDecision == SurvivalClassification.WATER:
dtWaters.remove(dtWaters[0])
elif treeDecision == SurvivalClassification.REST:
dtRestPlaces.remove(dtRestPlaces[0])
currentSituation = SurvivalDTExample(None, playerStats.hungerAmount, playerStats.thirstAmount,
playerStats.staminaAmount,
dtFoods[0].distanceFromPlayer, dtWaters[0].distanceFromPlayer,
dtRestPlaces[0].distanceFromPlayer)
treeDecision, choice = pickEntityAfterTreeDecision(currentSituation, entityPickingDecisionTree, dtFoods, dtRestPlaces, dtWaters)
return choice
def pickEntityAfterTreeDecision(currentSituation, decisionTree, dtFoods, dtRestPlaces, dtWaters):
treeDecision = decisionTree.giveAnswer(currentSituation)
choice = None
if treeDecision == SurvivalClassification.FOOD:
choice = dtFoods[0].interactable
elif treeDecision == SurvivalClassification.WATER:
choice = dtWaters[0].interactable
elif treeDecision == SurvivalClassification.REST:
choice = dtRestPlaces[0].interactable
return treeDecision, choice
def writeResults(iter, bestFit, bestMember):
"""
Logs the results of the iteration to files.
The function will create two files - one that is human-readable,
and the other as Raw data used for plotting and analysis.
The output file is fixed to src/AI/resultsExplorer/.
:param iter: Current iteration index
:param bestFit: Best fitness in this generation
:param bestMember: Array of affinities of the best member in the generation
"""
if iter == 0:
# Initialize human-readable log file
with open("src/AI/resultsExplorer/results.txt", "w+") as f:
f.write("GA Results from " + str(datetime.now()))
f.write("\n")
with open("src/AI/resultsExplorer/resultsRaw.txt", "w+") as f:
f.write("=HEADER=GA=\n")
with open("src/AI/resultsExplorer/results.txt", "a") as f:
f.write("Population: {}\n".format(iter))
f.write("Best fitness: {}\n".format(bestFit))
f.write("Best offspring: " + str(bestMember))
f.write("\n\n")
# Write raw arrays
with open("src/AI/resultsExplorer/resultsRaw.txt", "a") as f:
f.write(str(bestMember + [bestFit]))
f.write("\n")

View File

@ -18,6 +18,7 @@ import src.AI.DecisionTrees.projectSpecificClasses.Examples as Examples
from src.AI.DecisionTrees.projectSpecificClasses.SurvivalAttributesDefinitions import \
SurvivalAttributesDefinitions as AttrDefs
from src.AI.SurvivalDT import SurvivalDT
from src.AI.GA_With_DT import geneticAlgorithmWithDecisionTree
# Main Game class
@ -68,6 +69,9 @@ class Game:
else:
print("Running Genetic Algorithm in singlethreaded mode, iter = ", argv[2])
self.gaRun(filesPath, int(argv[2]))
elif argv[1] == "ga_dt" and len(argv) >= 3:
print("Running Genetic Algorithm with Decision Tree, iter = ", argv[2])
self.gaDTRun(filesPath, int(argv[2]))
else:
print("Invalid gamemode. \n Possible options: test, ga")
@ -287,3 +291,33 @@ class Game:
# Flip the display
pygame.display.flip()
def gaDTRun(self, filesPath, iter):
"""
Runs the game in GA with Decision Tree mode.
:param filesPath: Absolute path to game's root directory
"""
self.running = True
print("Initializing screen, params: " + str(self.config["window"]) + "...", end=" ")
# Vertical rotation is unsupported due to UI layout
if self.config["window"]["height"] > self.config["window"]["width"]:
print("The screen cannot be in a vertical orientation. Exiting...")
exit(1)
# Initialize timers
# Virtual timer to track in-game time
self.ingameTimer = Timer()
self.ingameTimer.startClock()
# Initialize screen
self.screen = Screen(self, self.config["window"])
print("OK")
self.initializeMap(filesPath)
# Run GA:
self.pgTimer.tick()
geneticAlgorithmWithDecisionTree(self.map, iter, 10, 0.1)
print("Time elapsed: ", self.pgTimer.tick() // 1000)