Finishing raport

This commit is contained in:
Mateusz 2020-06-01 01:20:16 +02:00
parent 9dc60c7062
commit f7c5deafda

View File

@ -4,11 +4,12 @@
## Cel algorytmu
Celem tego algorytmu jest wyznaczenie optymalnej trasy w zbieraniu ziół o konkretnych pozycjach, które
są generowane losowo. Algorytm decyduje po które zioło udać się najpierw, starając się, aby końcowa suma odległości
pomiędzy odwiedzonymi pozycjami była jak najmniejsza.
pomiędzy odwiedzonymi pozycjami była jak najmniejsza. Gdy agent zbierze wszystkie zioła i dojdzie do ogniska, aby
odpocząć, utworzy również eliksir, który odnowi mu wszystkie statystyki pierwotnego (pełnego) stanu.
## Osobnik Traveling
Osobnik jest to jednostka polegająca ewolucji za pomocą operacji genetycznych.
W mojej implementacji osobnika reprezentuje obiekt [Traveling.py](). Ten obiekt przechowuje następujące metody:
W mojej implementacji osobnika reprezentuje obiekt [Traveling.py](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/wirus_dev/src/AI/GaTravelingForHerbs/Traveling.py). Ten obiekt przechowuje następujące metody:
```python
class Traveling:
@ -67,7 +68,7 @@ def __repr__(self):
* Obiekt ten zwracany jest w formie tekstowej listy koordynatów.
## Obiekt GeneticAlgorithm
W pliku [GeneticAlgorithm.py]() znajduje się model selekcji osobników, warunek stopu, oraz główna pętla
W pliku [GeneticAlgorithm.py](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/wirus_dev/src/AI/GaTravelingForHerbs/GeneticAlgorithm.py) znajduje się model selekcji osobników, warunek stopu, oraz główna pętla
algorytmu.
```python
@ -129,3 +130,87 @@ a następnie obliczamy długość populacji i deklarujemy iterator pętli, któr
ewentualną mutację (metodą **mutation**).
* Wybieramy najlepszego osobnika z populacji po minimalnej odległości, oraz wyświetlamy wynik.
* Przeprowadzamy w ten sposób kolejną generację dopóki nie będzie ich 64.
```python
def listOfTravel(self):
strTravel = self.run()
import ast
return ast.literal_eval(strTravel)
```
* Ta metoda, odpowiada za uruchomienie algorytmu oraz zwrócenie najlepszego wyniku w postaci listy koordynatów
(nie jako string).
## Inicjalizacja pierwszej populacji i uruchomienie algorytmu
Uruchamiając projekt za pomocą [Run.py](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/wirus_dev/Run.py) z użyciem parametru **ga_travel**, projekt uruchomi się tak jak w przypadku
testowej wersji z dodatkiem kodu (znajduje się on w [Game.py](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/wirus_dev/src/game/Game.py)) zaprezentowanego poniżej;
```python
# Generate random travel list
self.travelCoords = random.sample(self.map.movableList(), 10)
import ast
self.travelCoords = ast.literal_eval(str(self.travelCoords))
# Insert herbs on random travel coordinates
self.map.insertHerbs(self.travelCoords)
# Initialize genetic algorithm
firstGeneration = [Traveling(START_COORD + sample(self.travelCoords, len(self.travelCoords)) + END_COORD) for _
in range(100)]
mutationProbability = float(0.1)
ga = GeneticAlgorithm(firstGeneration, mutationProbability)
self.movementList = ga.listOfTravel()
# Define list of entities which player should pass to collect herbs
self.entityToVisitList = []
for i in self.movementList:
self.entityToVisitList.append(self.map.getEntityOnCoord(i))
# Remove first element, because start coordinates is None
self.entityToVisitList.remove(self.entityToVisitList[0])
self.screen.ui.console.printToConsole("First generation: " + str(firstGeneration[0]))
self.screen.ui.console.printToConsole("The best generation: " + str(self.entityToVisitList))
self.mainLoop()
```
* Generujemy losową listę 10 koordynatów na mapie wolnych od entity za pomocą metody **map.movableList()** i konwertujemy
ją na normalną listę (nie *string*).
* Umieszczamy entity ziół w miejscach wygenerowanych koordynatów.
* Tworzymy pierwszą generację w postaci 100-elementowej listy, za pomocą konstruktora obiektu **Traveling** o koordynatach ziół plus startowa pozycja gracza
i pozycja ogniska, gdzie agent będzie w stanie sporządzić miksturę odnawiającą jego statystyki.
* Deklarujemy algorytm genetyczny przekazując pierwszą generację oraz prawdopodobieństwo mutacji wynoszące 10%
* Tworzymy listę kordynatów na których będziemy się poruszać, gdzie jej wartość co zwrócona lista przez
metodę **ga.listOfTravel()**
* Aby udać się po odpowiednie cele, tworzymy listę entity, które musimy zebrać, wykorzystując przy tym
wcześniej stworzoną listę **movementList** oraz metodę **map.getEntityOnCoord**.
* Usuwamy z listy **entityToVisitList** pierwszy element, gdyż jest to startowa pozycja gracza, na której nie
ma żadnego entity.
## Poruszanie się
*Zdefiniowane jest w pliku/klasie [EventManager.py](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/wirus_dev/src/game/EventManager.py).*
```python
if keys[pygame.K_t]: # Handle traveling movement to collect herbs
if self.player.movementTarget is None and self.iterator <= 10:
target = self.game.entityToVisitList[self.iterator]
self.player.gotoToTarget(target, self.game.map)
self.iterator += 1
if self.player.herbs > self.takenHerbs: # Console log when player collect herb
self.game.screen.ui.console.printToConsole("Ziele zebrane! Ilość: " + str(self.player.herbs))
self.takenHerbs = self.player.herbs
if self.player.readyToCrafting: # Console log and reset statistics because of collect all herbs
self.game.screen.ui.console.printToConsole("Eliksir został utworzony i spożyty!")
self.player.statistics.set_hp(100)
self.player.statistics.set_stamina(100)
self.player.statistics.set_thirst(-100)
self.player.statistics.set_hunger(-100)
self.player.readyToCrafting = False
```
Po kliknięciu przycisku **t** agent uda się po kolejne ziele do zebranie w
kolejce za pomocą algorytmu **A***. Obok jest również zaimplementowane wypisywanie ilości zebranych ziół,
oraz odnawianie statystyk po spożyciu eliksiru.