Compare commits

..

No commits in common. "master" and "terrainTilesList" have entirely different histories.

214 changed files with 439 additions and 5085 deletions

1
.gitignore vendored
View File

@ -1,4 +1,3 @@
/.idea/
__pycache__
/venv/
/doc/_build/

View File

@ -1,214 +0,0 @@
# DSZI_Survival - Drzewa Decyzyjne
### Autor: Michał Czekański
## Cel zastosowania w projekcie
W projekcie DSZI_Survival drzewo decyzyjne użyte jest do podejmowania decyzji przez agenta, rozbitka na bezludnej wyspie,
jaką czynność wykonać w danej chwili.
Czy:
* zdobyć pożywienie
* udać się do źródła wody
* odpocząć przy ognisku
## Opis drzewa decyzyjnego
* **Drzewo decyzyjne** to drzewo reprezentujące jakąś funkcję, Boolowską w najprostszym przypadku.
* Drzewo decyzyjne jako **argument** przyjmuje obiekt - sytuację opisaną za pomocą zestawu **atrybutów**
* **Wierzchołek** drzewa decyzyjnego odpowiada testowi jednego z atrybutów (np. IsMonday)
* Każda **gałąź** wychodząca z wierzchołka jest oznaczona możliwą wartością testu z wierzchołka (np. True)
* **Liść** zawiera wartość do zwrócenia (**decyzję, wybór**), gdy liść ten zostanie osiągnięty (np. ShopType.Grocery)
## Metoda uczenia - Algorytm ID3
Metoda użyta do uczenia drzewa decyzyjnego to metoda **indukcyjnego uczenia drzewa decyzyjnego**.
### Działanie ID3
* Definiujemy atrybuty, które będą posiadały przykłady służące do uczenia drzewa (**atrybuty**)
```python
class AttributeDefinition:
def __init__(self, id, name: str, values: List):
self.id = id
self.name = name
self.values = values
class Attribute:
def __init__(self, attributeDefinition: AttributeDefinition, value):
self.attributeDefinition = attributeDefinition
self.value = value
```
* Tworzymy przykłady z wykorzystaniem atrybutów (**przykłady**)
```python
class DecisionTreeExample:
def __init__(self, classification, attributes: List[Attribute]):
self.attributes = attributes
self.classification = classification
```
* Ustalamy domyślną wartość do zwrócenia przez drzewo - **klasa domyślna**
* Następnie postępujemy indukcyjnie:
* Jeżeli liczba przykładów == 0: zwracamy wierzchołek oznaczony klasą domyślną
* Jeżeli wszystkie przykłady są tak samo sklasyfikowane: zwracamy wierzchołek oznacz. tą klasą
* Jeżeli liczba atrybutów == 0: zwracamy wierzchołek oznacz. klasą, którą posiada większość przykładów
* W przeciwnym wypadku **wybieramy atrybut** A (o wyborze atrybutu poniżej) i czynimy go korzeniem drzewa T
* **nowa_klasa_domyślna** = wierzchołek oznaczony klasą, która jest przypisana największej liczbie przykładów
* Dla każdej wartości W atrybutu A:
* nowe_przykłady = przykłady, dla których atrybut A przyjmuje wartość W
* Dodajemy do T krawędź oznaczoną przez wartość W, która prowadzi do wierzchołka zwróconego przez wywołanie indukcyjne:
*treelearn(nowe_przykłady, atrybutyA, nowa_klasa_domyślna)*
* Zwróć drzewo T
```python
class DecisionTree(object):
def __init__(self, root):
self.root = root
self.branches = []
self.branchesNum = 0
```
### Wybór atrybutu
W trakcie uczenia drzewa decyzyjnego chcemy wybrać jak najlepszy atrybut, dzięki któremu możliwie jak najszybciej będziemy mogli sklasyfikować podane przykłady.
Miarą porównawczą atrybutów będzie **zysk informacji** dla danego atrybutu (**information gain**).
Atrybut o największym zysku zostanie wybrany.
**Implementacja**
```python
def chooseAttribute(attributes: List[AttributeDefinition], examples: List[DecisionTreeExample], classifications):
bestAttribute = None
bestAttributeGain = -1
for attribute in attributes:
attrInformationGain = calculateInformationGain(attribute, classifications, examples)
if attrInformationGain > bestAttributeGain:
bestAttribute = attribute
bestAttributeGain = attrInformationGain
return bestAttribute
```
#### Obliczanie zysku informacji
(Wszelkie obliczenia wedle wzorów podanych na zajęciach)
* I(C) - Obliczamy zawartość informacji dla zbioru możliwych klasyfikacji
![fig](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/raw/master/data/images/reportImages/DT/I%28C%29.png)
* E(A) - Obliczamy ilość informacji potrzebną do zakończenia klasyfikacji po sprawdzeniu atrybutu
![fig](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/raw/master/data/images/reportImages/DT/E%28A%29.png)
* **G(A)** - **Przyrost informacji dla atrybutu A** = I(C) - E(A)
**Implementacja**
```python
def calculateInformationGain(attribute: AttributeDefinition, classifications, examples: List[DecisionTreeExample]):
return calculateEntropy(classifications, examples) - calculateRemainder(attribute, examples, classifications)
```
## Opis implementacji
### Definicje atrybutów:
* Głód: **[0, 1/4); [1/4, 1/2); [1/2, 3/4); [3/4, 1]**
* Pragnienie: **[0, 1/4); [1/4, 1/2); [1/2, 3/4); [3/4, 1]**
* Energia: **[0, 1/4); [1/4, 1/2); [1/2, 3/4); [3/4, 1]**
* Odległość od jedzenia: **[0, 3); [3, 8); [8, 15); [15, max)**
* Odległość od źródła wody: **[0, 3); [3, 8); [8, 15); [15, max)**
* Odległość od miejsca spoczynku: **[0, 3); [3, 8); [8, 15); [15, max)**
* Odległość pomiędzy wodą a jedzeniem: **[0, 3); [3, 8); [8, 15); [15, max)**
```python
class PlayerStatsValue(Enum):
ZERO_TO_QUARTER = 0
QUARTER_TO_HALF = 1
HALF_TO_THREE_QUARTERS = 2
THREE_QUARTERS_TO_FULL = 3
class DistFromObject(Enum):
LT_3 = 0
GE_3_LT_8 = 1
GE_8_LT_15 = 2
GE_15 = 3
```
### Uczenie drzewa
```python
def inductiveDecisionTreeLearning(examples: List[DecisionTreeExample], attributes: List[AttributeDefinition], default,
classifications)
```
### Zwracanie decyzji przez drzewo
```python
def giveAnswer(self, example: DecisionTreeExample):
if self.branchesNum == 0:
return self.root
for attr in example.attributes:
if attr.attributeDefinition.id == self.root.id:
for branch in self.branches:
if branch.label == attr.value:
return branch.subtree.giveAnswer(example)
```
### Wybór celu dla agenta
```python
def pickEntity(self, player, map, pickForGa=False):
foods = map.getInteractablesByClassifier(Classifiers.FOOD)
waters = map.getInteractablesByClassifier(Classifiers.WATER)
rests = map.getInteractablesByClassifier(Classifiers.REST)
playerStats = DTPlayerStats.dtStatsFromPlayerStats(player.statistics)
# Get waters sorted by distance from player
dtWaters: List[DTSurvivalInteractable] = []
for water in waters:
dtWater = DTSurvivalInteractable.dtInteractableFromInteractable(water, player.x, player.y)
dtWaters.append(dtWater)
dtWaters.sort(key=lambda x: x.accurateDistanceFromPlayer)
nearestDtWater = dtWaters[0]
# Get foods sorted by distance from player
dtFoods: List[DTSurvivalInteractable] = []
for food in foods:
dtFood = DTSurvivalInteractable.dtInteractableFromInteractable(food, player.x, player.y)
dtFoods.append(dtFood)
dtFoods.sort(key=lambda x: x.accurateDistanceFromPlayer)
# If there is no food on map return nearest water.
try:
nearestDtFood = dtFoods[0]
except IndexError:
return nearestDtWater.interactable
# Get rest places sorted by distance from player
dtRestPlaces: List[DTSurvivalInteractable] = []
for rest in rests:
dtRest = DTSurvivalInteractable.dtInteractableFromInteractable(rest, player.x, player.y)
dtRestPlaces.append(dtRest)
dtRestPlaces.sort(key=lambda x: x.accurateDistanceFromPlayer)
nearestDtRest = dtRestPlaces[0]
currentSituation = SurvivalDTExample(None, playerStats.hungerAmount, playerStats.thirstAmount,
playerStats.staminaAmount,
nearestDtFood.dtDistanceFromPlayer, nearestDtWater.dtDistanceFromPlayer,
nearestDtRest.dtDistanceFromPlayer,
nearestDtFood.getDtDistanceFromOtherInteractable(nearestDtWater.interactable))
treeDecision, choice = self.__pickEntityAfterTreeDecision__(currentSituation,
dtFoods,
dtRestPlaces,
dtWaters)
return choice.interactable
```
## Zestaw uczący, zestaw testowy
### Zestaw uczący
Zestaw uczący był generowany poprzez tworzenie losowych przykładów i zapytanie użytkownika o klasyfikację, a następnie zapisywany do pliku.
### Zestaw testowy
Przy testowaniu drzewa podajemy ile procent wszystkich, wcześniej wygenerowanych przykładów mają być przykłady testowe.

View File

@ -1,173 +0,0 @@
# Algorythm Genetyczny w projekcie DSZI_Survival
**Autor:** Marcin Kostrzewski
---
## Cel
Celem algorytmu jest znalezienie czterech optymalnych wartości, według których
agent podejmuje decyzję, co zrobić dalej. Te cztery cechy to:
* Priorytet (chęć) zaspokajania głodu,
* Zaspokajanie pragnienia,
* Odpoczynek,
* Jak odległość od obiektu wpływa na podjętą decyzję.
Zestaw tych cech reprezentuje klasa-struktura **[*Affinities*](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/master/src/AI/Affinities.py)**:
```python
class Affinities:
def __init__(self, food, water, rest, walking):
"""
Create a container of affinities. Affinities describe, what type of entities a player prioritizes.
:param food: Food affinity
:param water: Freshwater affinity
:param rest: Firepit affinity
:param walking: How distances determine choices
"""
self.food = food
self.water = water
self.rest = rest
self.walking = walking
```
Oczywiście agent (gracz) posiada w swojej klasie pole ``self.affinities``.
## Podejmowanie decyzji
Gracz podejmuje decyzję o wyborze celu według następującej formuły:
```python
typeWeight / (distance / walkingAffinity) * affectedStat * multiplier
```
gdzie:
* *typeWeight* - wartość cechy odpowiadającej typowi celu,
* *distance* - odległość od celu,
* *walkingAffinity* - waga odległości,
* *affectedStat* - aktualna wartość odpowiadającej statystyki agenta,
* *multiplier* - mnożnik redukujący wpływ obecnych statystyk na wybór.
Implementacja w **[*GA.py/pickEntity()*](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/master/src/AI/GA.py)** (przykładowo dla jedzenia):
```python
watersWeights = []
thirst = player.statistics.thirst
for water in waters:
typeWeight = weights[1]
distance = abs(player.x - water.x) + abs(player.x - water.y)
watersWeights.append(typeWeight / (distance * walkingAffinity) * thirst * 0.01)
```
Dla każdego obiektu, z którym agent może podjąć interakcję wyliczana jest ta wartość
i wybierany jest obiekt, dla którego jest największa.
## Implementacja algorytmu genetycznego
Za realizację algorytmu odpowiada funkcja *geneticAlgorithm()* w **[*GA.py*](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/master/src/AI/GA.py)** (Skrócona wersja):
```python
def geneticAlgorithm(map, iter, solutions, mutationAmount=0.05):
# Based on 4 weights, that are affinities tied to the player
weightsCount = 4
# Initialize the first population with random values
initialPopulation = numpy.random.uniform(low=0.0, high=1.0, size=(solutions, weightsCount))
population = initialPopulation
for i in range(iter):
fitness = []
for player in population:
fitness.append(doSimulation(player, map))
parents = selectMatingPool(population, fitness, int(solutions / 2))
offspring = mating(parents, solutions, mutationAmount)
population = offspring
```
#### Omówienie:
##### Pierwsza populacja
Pierwsza populacja inicjalizowana jest losowymi wartościami. Szukamy
czterech najlepszych wag; każdy osobnik z gatunku jest reprezentowany przez
listę 4-elementową wag.
```python
initialPopulation = numpy.random.uniform(low=0.0, high=1.0, size=(solutions, weightsCount))
```
Rozpoczyna się pętla, która stworzy tyle generacji, ile sprecyzujemy w parametrze.
##### Symulacja i *fitness*
Dla każdego osobnika z populacji uruchamiana jest symulacja. Symulacja dzieje się w tle,
żeby zminimializować czas potrzebny do wykonania pełnej symulacji. Jej koniec następuje w momencie,
gdy agent umrze.
```python
fitness.append(doSimulation(player, map))
```
Wartością zwracaną przez funkcję symulacji jest tzw. *fitness*. W tym wypadku,
wartością tą jest ilość kroków, jakie pokonał agent przez cykl życia.
##### Wybór rodziców
Rodzice dla dzieci przyszłego pokolenia wybierani są na podstawie wartości
*fitness*. W tym wypadku wybirana jest połowa populacji z najwyższymi wartościami przeżywalności.
```python
parents = selectMatingPool(population, fitness, int(solutions / 2))
```
##### Potomstwo, czyli rozmnażanie i mutacje
Za wyliczanie wartości dla nowego pokolenia odpowiada funkcja ``mating``. Przekazujemy do niej rodziców, ilość potomstwa
i siłę mutacji. Z **[*GA.py/mating()*](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/master/src/AI/GA.py)**:
```python
for i in range(offspringCount):
parent1 = i % len(parents)
parent2 = (i + 1) % len(parents)
offspring.append(crossover(parents[parent1], parents[parent2]))
```
Do stworzenia potomstwa używana jest funkcja ``crossover``, która wylicza wartości, jakie przyjmie nowe potomstwo.
Wartośc ta to mediana wartości obu rodziców. Z **[*GA.py/crossover()*](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/master/src/AI/GA.py)**:
```python
for gene1, gene2 in zip(genes1, genes2):
result.append((gene1 + gene2) / 2)
```
Po zastosowaniu krzyżówki, jeden losowo wybrany gen jest alterowany o niewielką wartość (mutacja). Z **[*GA.py/mutation()*](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/src/master/src/AI/GA.py)**:
```python
for player in offspring:
randomGeneIdx = random.randrange(0, len(player))
player[randomGeneIdx] = player[randomGeneIdx] + random.uniform(-1.0, 1.0) * mutationAmount
```
Nowe potomstwo zastępuje obecną populacje i algorytm wchodzi w kolejną pętle:
```python
population = offspring
```
## Skuteczność algorytmu
Zastosowanie algorytmu przynosi niezbyt spektakularne, lecz oczekiwane wyniki. Po uruchomieniu symulacji
dla 1000 generacji:
* Wykres wartości fitness od generacji:
![fig](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/raw/master/data/images/exampleFitness.png)
* Najlepsze / najgorsze fitness:
```
Best Fitness: 186
Worst Fitness: 71
```
* Zestaw najlepszych / najgorszych wartości
```
Best:
Affinities: food=0.9659207331357987, water=1.06794833921562, rest=0.4224083038045297, walking=0.26676612275274836
Worst:
Affinities: food=0.3927852322929111, water=0.6888704071372844, rest=0.625376993269597, walking=0.5415515638814266
```
### Przykład symulacji dla najlepszego osobnika:
![gif](https://git.wmi.amu.edu.pl/s444409/DSZI_Survival/raw/master/data/images/screenshots/bestFitnessRunExample.gif)
## Zastosowanie w całości projektu
Dzięki wyliczonym przez algorytm wagom, gracz poruszający się w środowisku będzie znał swoje priorytety i będzie w stanie
przeżyć jak najdłużej. Obecnie, wybór obiektu jest dość statyczny i niezbyt "mądry", został napisany jedynie
na potrzeby tego projektu. W przyszłości algorytm może być trenowany według inteligentnych wyborów obiektów np. poprzez zastosowanie
drzewa decyzyjnego. Każdy obiekt ma zdefiniowany swój skutek, czyli gracz z góry wie, czym jest dany obiekt. W przyszłości
gracz może nie znać informacji o obiektach, może być do tego używany jakiś inny algorytm, który oceni,
czym jest dany obiekt.

View File

@ -1,70 +0,0 @@
# DSZI_Survival - Sieć Neuronowa
### Autor: Jonathan Spaczyński
## Cel zastosowania w projekcie
W projekcie DSZI_Survival sieć neuronowa użyta jest do podejmowania decyzji przez agenta.
Decyzja polega na rozpoznawaniu zdjęć owoców (jabłka i gruszki). W przypadku nie rozpoznania owocu przez
agenta, dochodzi do zatrucia i agent umiera/przegrywa.
## Przygotowanie danych
* **Krok 1** Przechowywane zdjęcia owoców muszą przejść przez proces zamiany zdjęcia (.jpg) na dane, które
mogą być wykorzystane przez sieć neuronową.
```python
CATEGORIES = ["Apple", "Pear"]
IMG_SIZE = 64
training_data = []
def create_training_data():
for category in CATEGORIES:
path = os.path.join(DATADIR, category)
class_num = CATEGORIES.index(category)
for img in os.listdir(path):
try:
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data.append([new_array, class_num])
except Exception as e:
pass
```
zdjęcia są przechowywane w tablicy training_data wraz z klasyfikacją (class_num) odpowiadającą jakim typem owocu jest zdjęcie
* **Krok 2** Bardzo ważnym krokiem jest pomieszanie danych. W przeciwnym wypadku nasz model po ciągłym otrzymywanie danych
reprezentujących tylko jedną kategorię owoców mógłby się wyuczyć, aby tylko zgadywać tą kategorię.
```python
random.shuffle(training_data)
```
* **Krok 3** Ostatnim krokiem jest zaktualizowanie danych w taki sposób żeby były z przedziału
od 0 d 255 (reprezentacja koloru danego pixela)
```python
X = X / 255.0
```
## Kilka słów na temat danych
* **Ilość Danych** Do trenowania modelu wykorzystałem 8568 zdjęć gruszek i jabłek
z czego mniej więcej połowa danych była jednym z typów ww. owoców, a druga połowa
reprezentowała pozostałą kategorią
* **Dane wykorzystane do obliczenia skutecznośći** stanowiły małą i oddzielną część danych wykorzystanych do trenowania.
## Model
* **Dane wejściowe:** Dane o kształcie 64x64 reprezentujące pixele w zdjęciach owoców
* **Warstwa ukryta:** Składająca się z 128 "neuronów" wykorzystującą sigmoid jako funkcję aktywacyjną
* **Warstwa wyjściowa:** Składająca się z 2 "neuronów" reprezentujących gruszkę i jabłko
* **Stała ucząca:** 0.001
```python
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(64, 64)),
tf.keras.layers.Dense(128, activation=tf.nn.sigmoid),
tf.keras.layers.Dense(2, activation=tf.nn.sigmoid)
])
model.compile(tf.keras.optimizers.Adam(lr=0.001),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
```
## Osiągniecia modelu
* **Trafność:** 86.4%
* **Strata:** 0.312

View File

@ -13,18 +13,12 @@ Python 3.x
pygame: 1.9.x
```
## Uruchomienie
Projekt można uruchomić w dwóch trybach, które podajemy jako parametry:
* test: Wizualne środowisko agenta, którym możemy sami prouszać
* ga: Uruchomienie algorytmu genetycznego w tle. Musimy dodatkowo jako kolejny
parametr podać ilość iteracji dla algorytmu. Możemy dodać -t, jeżeli
chcemy uruchomić algorytm w wielu wątkach (Nie działa zbyt dobrze)
```
$ python Run.py {test|ga} [iter] [-t]
$ python Run.py
```
## Konfiguracja
Plik z konfiguracją znajduje w ```data/config/mainConfig.json```.
## Sterowanie
* Poruszanie się: *WASD*
* A*: ***u*** lub click myszką w jednostkę (np; królik)
* Interakcja: *SPACJA*

5
Run.py
View File

@ -1,7 +1,6 @@
from pathlib import Path
import sys
from src.game.Game import Game
# TODO: Paths are still retarded
programPath = Path(".").resolve()
game = Game(programPath, sys.argv)
game = Game(programPath)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

Some files were not shown because too many files have changed in this diff Show More