89 lines
2.9 KiB
Python
89 lines
2.9 KiB
Python
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import time
|
||
|
import sys
|
||
|
|
||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||
|
|
||
|
enable_popularity = len(sys.argv) > 2 and sys.argv[1] == '--no-popularity'
|
||
|
|
||
|
def get_appid_for_idx(idx):
|
||
|
return steam_data.iloc[idx]['appid']
|
||
|
|
||
|
|
||
|
def get_name_for_idx_from_description(idx):
|
||
|
app_id = get_appid_for_idx(idx)
|
||
|
return steam_data_names[steam_data_names['appid'] == app_id]['name'].iloc[0]
|
||
|
|
||
|
|
||
|
def get_url_for_idx(idx):
|
||
|
app_id = get_appid_for_idx(idx)
|
||
|
return f'https://store.steampowered.com/app/{app_id}/'
|
||
|
|
||
|
|
||
|
def okapi_bm25(query, document_vectors, vectorizer: TfidfVectorizer):
|
||
|
b = 0.6
|
||
|
k = 1.5
|
||
|
q, = query
|
||
|
tf = document_vectors.tocsc()[:, q.indices]
|
||
|
idf = vectorizer._tfidf.idf_[None, q.indices] - 1.
|
||
|
avdl = document_vectors.sum(1).mean()
|
||
|
doc_len = document_vectors.sum(1).A1
|
||
|
|
||
|
top = tf.multiply(np.broadcast_to(idf, tf.shape)) * (k + 1)
|
||
|
bot = tf + (k * (1 - b + b * doc_len / avdl))[:, None]
|
||
|
|
||
|
return (top/bot).sum(1).A1
|
||
|
|
||
|
|
||
|
def parse_owners(data):
|
||
|
data = str(data)
|
||
|
if data == 'nan':
|
||
|
return 1.0
|
||
|
|
||
|
return float(data.split('-')[1])
|
||
|
|
||
|
print('Loading dataset...')
|
||
|
|
||
|
steam_data = pd.read_csv('data/steam_description_data.csv', usecols=[0, 1, 3])
|
||
|
steam_data_names = pd.read_csv('data/steam.csv', usecols=[0, 1, 16])
|
||
|
print(f'Dataset loaded. Row count: {len(steam_data)}')
|
||
|
|
||
|
print('Vectorizing...')
|
||
|
vectorizer = TfidfVectorizer(norm=None, smooth_idf=False)
|
||
|
data_column = steam_data['detailed_description']
|
||
|
data_column_names = steam_data_names['name']
|
||
|
document_vectors = vectorizer.fit_transform(data_column)
|
||
|
print('Done.')
|
||
|
print()
|
||
|
|
||
|
while True:
|
||
|
print('Enter query: ', end='')
|
||
|
|
||
|
query_str = input()
|
||
|
|
||
|
start_time = time.time()
|
||
|
query_vector = vectorizer.transform([query_str])
|
||
|
vectorizer.inverse_transform
|
||
|
similarities = okapi_bm25(query_vector, document_vectors, vectorizer)
|
||
|
if enable_popularity:
|
||
|
popularities = steam_data.join(steam_data_names, on='appid', lsuffix='name')['owners'].map(parse_owners).values
|
||
|
popularities_normalized = popularities / np.linalg.norm(popularities)
|
||
|
similarities = np.multiply(similarities, popularities_normalized)
|
||
|
exec_time = time.time() - start_time
|
||
|
|
||
|
results_count = len([x for x in similarities if x > 0])
|
||
|
|
||
|
print()
|
||
|
print(f'Results for query \'{query_str}\'')
|
||
|
for i in range (1,min(6, results_count + 1)):
|
||
|
data_index = similarities.argsort()[-i]
|
||
|
print(f'{i}.')
|
||
|
print(f'Game: {get_name_for_idx_from_description(data_index)}')
|
||
|
print(f'Description: {data_column[data_index]}')
|
||
|
print(f'URL: {get_url_for_idx(data_index)}')
|
||
|
print(f'Score: {round(np.sort(similarities)[-i], 3)}')
|
||
|
print('-'*10)
|
||
|
print()
|
||
|
|
||
|
print(f'{results_count} results in {round(exec_time, 5)}s')
|