Added files

This commit is contained in:
Marcin Kostrzewski 2022-04-05 23:23:00 +02:00
parent a6e8809b08
commit 5803d66f08
6 changed files with 201 additions and 76 deletions

View File

@ -1,3 +1,23 @@
# EKS_SteamSearchEngine # EKS_SteamSearchEngine
A task for Information Extraction which provides you an interface to query for Steam games descriptions. A task for Information Extraction which provides you an interface to query for Steam games descriptions.
Dataset used: https://www.kaggle.com/datasets/nikdavis/steam-store-games
## Requirements
- `python3`
- (Optional) Kaggle setup with an API token
## Setup
1. Dataset is available to downloaded on Kaggle. You can either download it manually from https://www.kaggle.com/datasets/nikdavis/steam-store-games, and extract the `.zip` file contents into the `data` folder. If you have Kaggle setup with a token on your machine, you can proceed to the next step
2. Run `./setup.sh`
## Usage
Run `python3 search-engine.py`.
The program should load the data and provide you a query interface.
### Additional arguments
The search engine also uses game's popularity to provide the query results. You can disable it by providing `--no-popularity` param into the executable.

0
data/.keepdir Normal file
View File

3
requirements.txt Normal file
View File

@ -0,0 +1,3 @@
numpy==1.22.3
scikit-learn==1.0.2
pandas==1.4.2

89
search-engine.py Normal file
View File

@ -0,0 +1,89 @@
import numpy as np
import pandas as pd
import time
import sys
from sklearn.feature_extraction.text import TfidfVectorizer
enable_popularity = len(sys.argv) > 2 and sys.argv[1] == '--no-popularity'
def get_appid_for_idx(idx):
return steam_data.iloc[idx]['appid']
def get_name_for_idx_from_description(idx):
app_id = get_appid_for_idx(idx)
return steam_data_names[steam_data_names['appid'] == app_id]['name'].iloc[0]
def get_url_for_idx(idx):
app_id = get_appid_for_idx(idx)
return f'https://store.steampowered.com/app/{app_id}/'
def okapi_bm25(query, document_vectors, vectorizer: TfidfVectorizer):
b = 0.6
k = 1.5
q, = query
tf = document_vectors.tocsc()[:, q.indices]
idf = vectorizer._tfidf.idf_[None, q.indices] - 1.
avdl = document_vectors.sum(1).mean()
doc_len = document_vectors.sum(1).A1
top = tf.multiply(np.broadcast_to(idf, tf.shape)) * (k + 1)
bot = tf + (k * (1 - b + b * doc_len / avdl))[:, None]
return (top/bot).sum(1).A1
def parse_owners(data):
data = str(data)
if data == 'nan':
return 1.0
return float(data.split('-')[1])
print('Loading dataset...')
steam_data = pd.read_csv('data/steam_description_data.csv', usecols=[0, 1, 3])
steam_data_names = pd.read_csv('data/steam.csv', usecols=[0, 1, 16])
print(f'Dataset loaded. Row count: {len(steam_data)}')
print('Vectorizing...')
vectorizer = TfidfVectorizer(norm=None, smooth_idf=False)
data_column = steam_data['detailed_description']
data_column_names = steam_data_names['name']
document_vectors = vectorizer.fit_transform(data_column)
print('Done.')
print()
while True:
print('Enter query: ', end='')
query_str = input()
start_time = time.time()
query_vector = vectorizer.transform([query_str])
vectorizer.inverse_transform
similarities = okapi_bm25(query_vector, document_vectors, vectorizer)
if enable_popularity:
popularities = steam_data.join(steam_data_names, on='appid', lsuffix='name')['owners'].map(parse_owners).values
popularities_normalized = popularities / np.linalg.norm(popularities)
similarities = np.multiply(similarities, popularities_normalized)
exec_time = time.time() - start_time
results_count = len([x for x in similarities if x > 0])
print()
print(f'Results for query \'{query_str}\'')
for i in range (1,min(6, results_count + 1)):
data_index = similarities.argsort()[-i]
print(f'{i}.')
print(f'Game: {get_name_for_idx_from_description(data_index)}')
print(f'Description: {data_column[data_index]}')
print(f'URL: {get_url_for_idx(data_index)}')
print(f'Score: {round(np.sort(similarities)[-i], 3)}')
print('-'*10)
print()
print(f'{results_count} results in {round(exec_time, 5)}s')

13
setup.sh Normal file
View File

@ -0,0 +1,13 @@
cd data
if [ ! -f "steam.csv" ];
then
echo "Downloading dataset from Kaggle..."
kaggle datasets download -d https://www.kaggle.com/datasets/nikdavis/steam-store-games
echo "Done."
fi
sed -i -e '1!b;s/steam_appid/appid/' steam_description_data.csv
cd ..
echo "Installing dependencies..."
pip3 install -r requirements.txt