Network_attack_propagation/network_attack_propagation.py

132 lines
3.5 KiB
Python
Raw Permalink Normal View History

2022-06-16 19:57:51 +02:00
import random
2022-06-16 21:44:51 +02:00
from statistics import mean
2022-06-16 19:57:51 +02:00
import matplotlib.pyplot as plt
2022-06-16 21:44:51 +02:00
import networkx as nx
2022-06-16 19:57:51 +02:00
from matplotlib import animation
2022-06-16 18:39:16 +02:00
class Node:
2022-06-16 19:57:51 +02:00
def __init__(self, is_infected=False):
self.id = random.randint(1, 2000000)
self.is_infected = is_infected
def as_tuple(self):
return self.id, self.is_infected
def __repr__(self):
return f'id: {self.id}, infected: {self.is_infected}'
2022-06-16 18:39:16 +02:00
class Edge:
def __init__(self, node_a: Node, node_b: Node, weight: float):
self.node_a = node_a
self.node_b = node_b
self.weight = weight
2022-06-16 19:57:51 +02:00
def as_tuple(self):
return self.node_a, self.node_b, {'weight': self.weight}
2022-06-16 18:39:16 +02:00
class Graph:
def __init__(self):
self.edges = []
def add_edge(self, edge: Edge):
2022-06-16 19:57:51 +02:00
self.edges.append(edge)
def add_edges(self, edges: [Edge]):
[self.edges.append(e) for e in edges]
2022-06-16 20:14:56 +02:00
def get_nodes(self) -> [Node]:
nodes = set()
for edge in self.edges:
nodes.add(edge.node_a)
nodes.add(edge.node_b)
return nodes
2022-06-16 19:57:51 +02:00
2022-06-16 20:14:56 +02:00
def update(num, layout, g_repr, ax, our_graph: Graph):
2022-06-16 19:57:51 +02:00
"""
This function is called every 'step', so if you wish to update the graph, do it here
"""
ax.clear()
2022-06-16 20:14:56 +02:00
for n in our_graph.get_nodes():
n.is_infected = bool(random.getrandbits(1))
colors = ['red' if n.is_infected else 'blue' for n in g_repr]
nx.draw_networkx(g_repr, ax=ax, pos=layout, node_color=colors, with_labels=False)
2022-06-16 19:57:51 +02:00
def do_graph_animation(output_file_name: str, in_graph: Graph, frame_count: int):
g_repr = nx.Graph()
# Convert our graph class into tuples understood by networkx
g_repr.add_edges_from([e.as_tuple() for e in in_graph.edges])
layout = nx.spring_layout(g_repr)
fig, ax = plt.subplots()
anim = animation.FuncAnimation(fig, update, frames=frame_count, fargs=(layout, g_repr, ax, in_graph))
anim.save(output_file_name)
plt.show()
2022-06-16 20:44:58 +02:00
def bus_network(n=30) -> Graph:
network = Graph()
nodes = [Node() for _ in range(n)]
2022-06-16 21:44:51 +02:00
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
2022-06-16 20:44:58 +02:00
network.add_edges(edges)
return network
2022-06-16 21:44:51 +02:00
def rank_avg(edges, digits=2):
ranks = {}
for e in edges:
ranks[e.node_a] = ranks.get(e.node_a, 0) + 1
ranks[e.node_b] = ranks.get(e.node_b, 0) + 1
return round(mean(ranks.values()), digits)
def star_network(cluster_count=5, starsize=6) -> tuple[Graph, float]:
node_count = cluster_count + cluster_count * starsize + 1
nodes = [Node() for _ in range(node_count)]
edges = []
for x in range(cluster_count):
center_node = x * starsize + x
edges += [Edge(nodes[center_node], nodes[i], 1.0) for i in range(center_node + 1, center_node + starsize + 1)]
edges.append(Edge(nodes[-1], nodes[center_node], 1.0))
network = Graph()
network.add_edges(edges)
return network, rank_avg(edges)
2022-06-16 19:57:51 +02:00
def main():
network = Graph()
nodes = [Node(True), Node(), Node(), Node(True), Node()]
network.add_edges([
Edge(nodes[1], nodes[0], 0.02),
Edge(nodes[1], nodes[2], 0.2),
Edge(nodes[2], nodes[0], 0.7),
Edge(nodes[3], nodes[2], 0.2),
Edge(nodes[3], nodes[1], 0.2),
Edge(nodes[4], nodes[3], 0.2)
])
2022-06-16 20:14:56 +02:00
do_graph_animation('test.gif', network, 5)
2022-06-16 19:57:51 +02:00
2022-06-16 20:44:58 +02:00
bus = bus_network()
do_graph_animation('bus.gif', bus, 5)
2022-06-16 21:44:51 +02:00
star, star_avg_rank = star_network()
do_graph_animation('star.gif', star, 5)
2022-06-16 19:57:51 +02:00
if __name__ == "__main__":
main()