Compare commits
33 Commits
Author | SHA1 | Date | |
---|---|---|---|
b012436844 | |||
93ee5987f5 | |||
b35d988f38 | |||
db68fbd789 | |||
be3adf775e | |||
c08a177c43 | |||
|
f3a7a4a64d | ||
de0560d538 | |||
|
8ee201b319 | ||
|
c703d7e44d | ||
edeb9d3b8f | |||
182287c23c | |||
6f8563f7d8 | |||
|
921b8aaed0 | ||
8fe3c2bf8e | |||
46ae4299c4 | |||
|
e93cc98193 | ||
|
6e42853e38 | ||
|
5b67b5b953 | ||
|
10ba0fbd9d | ||
f6e749269a | |||
f2d85a3e7d | |||
6269168fb8 | |||
53e8b1f414 | |||
02800bcb7e | |||
eb5e546e73 | |||
1bca995878 | |||
816d1e53bf | |||
78e3b287fb | |||
255420e622 | |||
b6706489da | |||
e9d501c132 | |||
|
14495cebda |
6
.gitignore
vendored
6
.gitignore
vendored
@ -9,6 +9,12 @@
|
|||||||
profile_default/
|
profile_default/
|
||||||
ipython_config.py
|
ipython_config.py
|
||||||
|
|
||||||
|
*.gif
|
||||||
|
*.png
|
||||||
|
|
||||||
|
__pycache__/
|
||||||
|
.idea/
|
||||||
|
|
||||||
# Remove previous ipynb_checkpoints
|
# Remove previous ipynb_checkpoints
|
||||||
# git rm -r .ipynb_checkpoints/
|
# git rm -r .ipynb_checkpoints/
|
||||||
|
|
||||||
|
File diff suppressed because one or more lines are too long
@ -10,6 +10,7 @@ class Node:
|
|||||||
def __init__(self, is_infected=False):
|
def __init__(self, is_infected=False):
|
||||||
self.id = random.randint(1, 2000000)
|
self.id = random.randint(1, 2000000)
|
||||||
self.is_infected = is_infected
|
self.is_infected = is_infected
|
||||||
|
self.under_attack = False
|
||||||
|
|
||||||
def as_tuple(self):
|
def as_tuple(self):
|
||||||
return self.id, self.is_infected
|
return self.id, self.is_infected
|
||||||
@ -27,10 +28,15 @@ class Edge:
|
|||||||
def as_tuple(self):
|
def as_tuple(self):
|
||||||
return self.node_a, self.node_b, {'weight': self.weight}
|
return self.node_a, self.node_b, {'weight': self.weight}
|
||||||
|
|
||||||
|
def has_node(self, node: Node) -> bool:
|
||||||
|
return self.node_a is node or self.node_b is node
|
||||||
|
|
||||||
|
|
||||||
class Graph:
|
class Graph:
|
||||||
def __init__(self):
|
def __init__(self, use_weights=False):
|
||||||
self.edges = []
|
self.edges = []
|
||||||
|
self.use_weights = use_weights
|
||||||
|
self.rounds_survived = 0
|
||||||
|
|
||||||
def add_edge(self, edge: Edge):
|
def add_edge(self, edge: Edge):
|
||||||
self.edges.append(edge)
|
self.edges.append(edge)
|
||||||
@ -45,87 +51,230 @@ class Graph:
|
|||||||
nodes.add(edge.node_b)
|
nodes.add(edge.node_b)
|
||||||
return nodes
|
return nodes
|
||||||
|
|
||||||
|
def get_edges_with_node(self, node: Node):
|
||||||
|
return filter(lambda ed: ed.has_node(node), self.edges)
|
||||||
|
|
||||||
|
def clear_attacked(self) -> None:
|
||||||
|
for edge in self.edges:
|
||||||
|
edge.node_a.under_attack = False
|
||||||
|
edge.node_b.under_attack = False
|
||||||
|
|
||||||
|
def get_adjacent_nodes(self, node: Node) -> [(Node, int)]:
|
||||||
|
"""
|
||||||
|
:param node: Node to search for
|
||||||
|
:return: An array of tuples (node, weight)
|
||||||
|
"""
|
||||||
|
edges_with_node = self.get_edges_with_node(node)
|
||||||
|
nodes = set()
|
||||||
|
for e in edges_with_node:
|
||||||
|
if e.node_a is node:
|
||||||
|
nodes.add((e.node_b, e.weight))
|
||||||
|
else:
|
||||||
|
nodes.add((e.node_a, e.weight))
|
||||||
|
|
||||||
|
return nodes
|
||||||
|
|
||||||
|
def is_alive(self):
|
||||||
|
nodes_alive = list(filter(lambda x: not x.is_infected, self.get_nodes()))
|
||||||
|
return len(nodes_alive) > 0
|
||||||
|
|
||||||
|
def update_survived(self):
|
||||||
|
if not self.is_alive():
|
||||||
|
return
|
||||||
|
|
||||||
|
self.rounds_survived += 1
|
||||||
|
|
||||||
|
def infect_step(self):
|
||||||
|
infected_nodes = list(filter(lambda n: n.is_infected, self.get_nodes()))
|
||||||
|
for node in infected_nodes:
|
||||||
|
adjacent_nodes = self.get_adjacent_nodes(node)
|
||||||
|
if self.use_weights:
|
||||||
|
to_be_infected = random.choices([n[0] for n in adjacent_nodes], weights=[n[1] for n in adjacent_nodes])[0]
|
||||||
|
else:
|
||||||
|
to_be_infected = random.choice([n[0] for n in adjacent_nodes])
|
||||||
|
to_be_infected.is_infected = True
|
||||||
|
to_be_infected.under_attack = True
|
||||||
|
self.update_survived()
|
||||||
|
|
||||||
|
|
||||||
def update(num, layout, g_repr, ax, our_graph: Graph):
|
def update(num, layout, g_repr, ax, our_graph: Graph):
|
||||||
"""
|
"""
|
||||||
This function is called every 'step', so if you wish to update the graph, do it here
|
This function is called every 'step', so if you wish to update the graph, do it here
|
||||||
"""
|
"""
|
||||||
|
if not our_graph.is_alive():
|
||||||
|
return
|
||||||
|
|
||||||
|
if num != 0:
|
||||||
|
our_graph.infect_step()
|
||||||
ax.clear()
|
ax.clear()
|
||||||
|
|
||||||
for n in our_graph.get_nodes():
|
ax.set_title(f'Step: {num}', loc='right', fontsize=30)
|
||||||
n.is_infected = bool(random.getrandbits(1))
|
|
||||||
|
|
||||||
colors = ['red' if n.is_infected else 'blue' for n in g_repr]
|
colors = ['red' if n.is_infected else 'blue' for n in g_repr]
|
||||||
nx.draw_networkx(g_repr, ax=ax, pos=layout, node_color=colors, with_labels=False)
|
edgecolors = ['black' if n.under_attack else 'none' for n in g_repr]
|
||||||
|
linewidths = [3 if c == 'black' else 0 for c in edgecolors]
|
||||||
|
sizes = [300 if n.is_infected else 150 for n in g_repr]
|
||||||
|
nx.draw(
|
||||||
|
g_repr,
|
||||||
|
ax=ax,
|
||||||
|
pos=layout,
|
||||||
|
node_color=colors,
|
||||||
|
linewidths=linewidths,
|
||||||
|
edgecolors=edgecolors,
|
||||||
|
with_labels=False,
|
||||||
|
node_size=sizes,
|
||||||
|
alpha=0.7,
|
||||||
|
)
|
||||||
|
|
||||||
|
our_graph.clear_attacked()
|
||||||
|
|
||||||
|
|
||||||
def do_graph_animation(output_file_name: str, in_graph: Graph, frame_count: int):
|
def do_graph_animation(output_file_name: str, in_graph: Graph, frame_count: int, layout):
|
||||||
g_repr = nx.Graph()
|
g_repr = nx.Graph()
|
||||||
# Convert our graph class into tuples understood by networkx
|
# Convert our graph class into tuples understood by networkx
|
||||||
g_repr.add_edges_from([e.as_tuple() for e in in_graph.edges])
|
g_repr.add_edges_from([e.as_tuple() for e in in_graph.edges])
|
||||||
|
|
||||||
layout = nx.spring_layout(g_repr)
|
layout = layout(g_repr)
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
|
|
||||||
anim = animation.FuncAnimation(fig, update, frames=frame_count, fargs=(layout, g_repr, ax, in_graph))
|
fig.set_figwidth(8)
|
||||||
|
fig.set_figheight(8)
|
||||||
|
|
||||||
|
anim = animation.FuncAnimation(
|
||||||
|
fig, update, frames=frame_count, interval=500, fargs=(layout, g_repr, ax, in_graph)
|
||||||
|
)
|
||||||
anim.save(output_file_name)
|
anim.save(output_file_name)
|
||||||
|
|
||||||
|
plt.style.use('seaborn')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def bus_network(n=30) -> Graph:
|
def degree_avg(edges, digits=2):
|
||||||
|
degrees = {}
|
||||||
|
for e in edges:
|
||||||
|
degrees[e.node_a] = degrees.get(e.node_a, 0) + 1
|
||||||
|
degrees[e.node_b] = degrees.get(e.node_b, 0) + 1
|
||||||
|
return round(mean(degrees.values()), digits)
|
||||||
|
|
||||||
|
|
||||||
|
def bus_network(n=30, infected_idx=0) -> tuple[Graph, float, int]:
|
||||||
network = Graph()
|
network = Graph()
|
||||||
nodes = [Node() for _ in range(n)]
|
nodes = [Node() for _ in range(n)]
|
||||||
|
nodes[infected_idx].is_infected = True
|
||||||
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
|
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
|
||||||
|
|
||||||
network.add_edges(edges)
|
network.add_edges(edges)
|
||||||
return network
|
return network, degree_avg(edges), n
|
||||||
|
|
||||||
|
|
||||||
def rank_avg(edges, digits=2):
|
def star_network(cluster_count=5, starsize=6, use_weights=False) -> tuple[Graph, float, int]:
|
||||||
ranks = {}
|
|
||||||
for e in edges:
|
|
||||||
ranks[e.node_a] = ranks.get(e.node_a, 0) + 1
|
|
||||||
ranks[e.node_b] = ranks.get(e.node_b, 0) + 1
|
|
||||||
return round(mean(ranks.values()), digits)
|
|
||||||
|
|
||||||
|
|
||||||
def star_network(cluster_count=5, starsize=6) -> tuple[Graph, float]:
|
|
||||||
node_count = cluster_count + cluster_count * starsize + 1
|
node_count = cluster_count + cluster_count * starsize + 1
|
||||||
nodes = [Node() for _ in range(node_count)]
|
nodes = [Node() for _ in range(node_count)]
|
||||||
|
nodes[starsize-1].is_infected = True
|
||||||
|
|
||||||
edges = []
|
edges = []
|
||||||
for x in range(cluster_count):
|
for x in range(cluster_count):
|
||||||
center_node = x * starsize + x
|
center_node = x * starsize + x
|
||||||
edges += [Edge(nodes[center_node], nodes[i], 1.0) for i in range(center_node + 1, center_node + starsize + 1)]
|
vulnerability = 1.0 if not use_weights else max(1.0, starsize)
|
||||||
|
edges += [Edge(nodes[center_node], nodes[i], vulnerability) for i in range(center_node + 1, center_node + starsize + 1)]
|
||||||
edges.append(Edge(nodes[-1], nodes[center_node], 1.0))
|
edges.append(Edge(nodes[-1], nodes[center_node], 1.0))
|
||||||
|
|
||||||
network = Graph()
|
network = Graph()
|
||||||
network.add_edges(edges)
|
network.add_edges(edges)
|
||||||
|
|
||||||
return network, rank_avg(edges)
|
return network, degree_avg(edges), node_count
|
||||||
|
|
||||||
|
|
||||||
|
def ring_network(n=30) -> tuple[Graph, float, int]:
|
||||||
|
network = Graph()
|
||||||
|
nodes = [Node() for _ in range(n)]
|
||||||
|
nodes[0].is_infected = True
|
||||||
|
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
|
||||||
|
end_edge = Edge(nodes[n - 1], nodes[0], 1.0)
|
||||||
|
edges.append(end_edge)
|
||||||
|
|
||||||
|
network.add_edges(edges)
|
||||||
|
return network, degree_avg(edges), n
|
||||||
|
|
||||||
|
|
||||||
|
def summary(average_degrees: list[float], propagation_speeds: list[float]) -> None:
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.plot(average_degrees, propagation_speeds)
|
||||||
|
ax.set(xlabel='Average degree', ylabel='Propagation speed', title='Summary')
|
||||||
|
fig.savefig("summary.png")
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
def bus_experiment():
|
||||||
|
degrees = []
|
||||||
|
speeds = []
|
||||||
|
sizes = [0, 8, 15]
|
||||||
|
for i in sizes:
|
||||||
|
bus, bus_avg_degree, node_count = bus_network(20 + i)
|
||||||
|
do_graph_animation(f'bus{i}.gif', bus, 90, nx.spring_layout)
|
||||||
|
speeds.append(bus.rounds_survived / node_count)
|
||||||
|
degrees.append(bus_avg_degree)
|
||||||
|
print(f"\n{node_count} NODE bus")
|
||||||
|
print(f"average degree = {bus_avg_degree}")
|
||||||
|
print(f"propagation speed = {round(speeds[-1], 2)}")
|
||||||
|
print(f"bus{i} rounds survived = {bus.rounds_survived + 1}")
|
||||||
|
|
||||||
|
summary(degrees, speeds)
|
||||||
|
|
||||||
|
def ring_experiment():
|
||||||
|
degrees = []
|
||||||
|
speeds = []
|
||||||
|
sizes = [0, 8, 15]
|
||||||
|
for i in sizes:
|
||||||
|
ring, ring_avg_degree, node_count = ring_network(20 + i)
|
||||||
|
do_graph_animation(f'ring{i}.gif', ring, 90, nx.circular_layout)
|
||||||
|
speeds.append(ring.rounds_survived / node_count)
|
||||||
|
degrees.append(ring_avg_degree)
|
||||||
|
print(f"\n{node_count} NODE ring")
|
||||||
|
print(f"average degree = {ring_avg_degree}")
|
||||||
|
print(f"propagation speed = {round(speeds[-1], 2)}")
|
||||||
|
print(f"ring{i} rounds survived = {ring.rounds_survived + 1}")
|
||||||
|
|
||||||
|
def star_experiment():
|
||||||
|
degrees = []
|
||||||
|
speeds = []
|
||||||
|
sizes = range(0, 8, 2)
|
||||||
|
for i in sizes:
|
||||||
|
star, star_avg_degree, node_count = star_network(cluster_count=3 + i, starsize=3 + i)
|
||||||
|
do_graph_animation(f'star{i}.gif', star, 120, nx.kamada_kawai_layout)
|
||||||
|
speeds.append(star.rounds_survived / node_count)
|
||||||
|
degrees.append(star_avg_degree)
|
||||||
|
print(f"\n{node_count} NODE STAR")
|
||||||
|
print(f"average degree = {star_avg_degree}")
|
||||||
|
print(f"propagation speed = {round(speeds[-1], 2)}")
|
||||||
|
print(f"star{i} rounds survived = {star.rounds_survived + 1}")
|
||||||
|
|
||||||
|
summary(degrees, speeds)
|
||||||
|
|
||||||
|
|
||||||
|
def weighted_star_experiment():
|
||||||
|
degrees = []
|
||||||
|
speeds = []
|
||||||
|
sizes = range(0, 8, 2)
|
||||||
|
for i in sizes:
|
||||||
|
star, star_avg_degree, node_count = star_network(cluster_count=3 + i, starsize=3 + i, use_weights=True)
|
||||||
|
do_graph_animation(f'star_weighted{i}.gif', star, 120, nx.kamada_kawai_layout)
|
||||||
|
speeds.append(star.rounds_survived / node_count)
|
||||||
|
degrees.append(star_avg_degree)
|
||||||
|
print(f"\n{node_count} NODE STAR")
|
||||||
|
print(f"average degree = {star_avg_degree}")
|
||||||
|
print(f"propagation speed = {round(speeds[-1], 2)}")
|
||||||
|
print(f"star{i} rounds survived = {star.rounds_survived + 1}")
|
||||||
|
|
||||||
|
summary(degrees, speeds)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
network = Graph()
|
bus_experiment()
|
||||||
nodes = [Node(True), Node(), Node(), Node(True), Node()]
|
ring_experiment()
|
||||||
|
star_experiment()
|
||||||
network.add_edges([
|
weighted_star_experiment()
|
||||||
Edge(nodes[1], nodes[0], 0.02),
|
|
||||||
Edge(nodes[1], nodes[2], 0.2),
|
|
||||||
Edge(nodes[2], nodes[0], 0.7),
|
|
||||||
Edge(nodes[3], nodes[2], 0.2),
|
|
||||||
Edge(nodes[3], nodes[1], 0.2),
|
|
||||||
Edge(nodes[4], nodes[3], 0.2)
|
|
||||||
])
|
|
||||||
|
|
||||||
do_graph_animation('test.gif', network, 5)
|
|
||||||
|
|
||||||
bus = bus_network()
|
|
||||||
do_graph_animation('bus.gif', bus, 5)
|
|
||||||
|
|
||||||
star, star_avg_rank = star_network()
|
|
||||||
do_graph_animation('star.gif', star, 5)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
Loading…
Reference in New Issue
Block a user