Compare commits

..

33 Commits
stars ... main

Author SHA1 Message Date
b012436844 Remove gifs from jupyter 2022-06-21 17:46:20 +02:00
93ee5987f5 Final fixes 2022-06-21 17:41:23 +02:00
b35d988f38 Update gitignore 2022-06-21 17:40:12 +02:00
db68fbd789 Final changes 2022-06-21 17:39:36 +02:00
be3adf775e Added weighted star jupyter 2022-06-21 17:25:42 +02:00
c08a177c43 Fix filenames 2022-06-21 17:19:04 +02:00
Mateusz
f3a7a4a64d add experiments to jupyter 2022-06-21 17:07:27 +02:00
de0560d538 Add weighted star experiment 2022-06-21 17:00:18 +02:00
Mateusz
8ee201b319 jupyter correction remove prosty 2022-06-21 16:40:42 +02:00
Mateusz
c703d7e44d jupyter correction 2022-06-21 16:40:02 +02:00
edeb9d3b8f fixed propagation speed calculation 2022-06-21 16:37:09 +02:00
182287c23c Merge remote-tracking branch 'origin/main' 2022-06-21 16:28:15 +02:00
6f8563f7d8 Fix refactored experiments 2022-06-21 16:28:11 +02:00
Mateusz
921b8aaed0 add gifs to jupyter 2022-06-21 16:26:33 +02:00
8fe3c2bf8e Refactor experiments 2022-06-21 16:24:48 +02:00
46ae4299c4 Fix typos in prints 2022-06-21 16:15:55 +02:00
Mateusz
e93cc98193 simple conclusion 2022-06-21 16:02:32 +02:00
Mateusz
6e42853e38 corrections 2022-06-21 15:55:33 +02:00
Mateusz
5b67b5b953 implement bus and ring experiment 2022-06-21 15:45:29 +02:00
Mateusz
10ba0fbd9d rounds survived correction and add to star experiment 2022-06-21 15:25:05 +02:00
f6e749269a summary graph and experiment 2022-06-20 21:18:05 +02:00
f2d85a3e7d avg rank calculation for all topologies 2022-06-20 19:18:56 +02:00
6269168fb8 Added outline for nodes under attack in a given step. 2022-06-20 19:15:24 +02:00
53e8b1f414 Added Markdowns for Spacer Losowy and Model 2022-06-20 01:34:48 +02:00
02800bcb7e Added Step counter to the gif.
Fixed multiple infected nodes at step 0.
2022-06-20 01:10:32 +02:00
eb5e546e73 Added survivability counts 2022-06-16 22:38:52 +02:00
1bca995878 Show infections in star topology 2022-06-16 22:12:44 +02:00
816d1e53bf Use kamada_kawai layout in star topology 2022-06-16 22:08:24 +02:00
78e3b287fb Merge remote-tracking branch 'origin/stars'
# Conflicts:
#	network_attack_propagation.py
2022-06-16 22:06:23 +02:00
255420e622 Add path traversal with infection 2022-06-16 22:05:00 +02:00
b6706489da More flexible layouts 2022-06-16 21:17:45 +02:00
e9d501c132 Styling 2022-06-16 21:05:08 +02:00
Wirusik
14495cebda ring init 2022-06-16 20:58:13 +02:00
3 changed files with 737 additions and 68 deletions

6
.gitignore vendored
View File

@ -9,6 +9,12 @@
profile_default/
ipython_config.py
*.gif
*.png
__pycache__/
.idea/
# Remove previous ipynb_checkpoints
# git rm -r .ipynb_checkpoints/

File diff suppressed because one or more lines are too long

View File

@ -10,6 +10,7 @@ class Node:
def __init__(self, is_infected=False):
self.id = random.randint(1, 2000000)
self.is_infected = is_infected
self.under_attack = False
def as_tuple(self):
return self.id, self.is_infected
@ -27,10 +28,15 @@ class Edge:
def as_tuple(self):
return self.node_a, self.node_b, {'weight': self.weight}
def has_node(self, node: Node) -> bool:
return self.node_a is node or self.node_b is node
class Graph:
def __init__(self):
def __init__(self, use_weights=False):
self.edges = []
self.use_weights = use_weights
self.rounds_survived = 0
def add_edge(self, edge: Edge):
self.edges.append(edge)
@ -45,86 +51,229 @@ class Graph:
nodes.add(edge.node_b)
return nodes
def get_edges_with_node(self, node: Node):
return filter(lambda ed: ed.has_node(node), self.edges)
def clear_attacked(self) -> None:
for edge in self.edges:
edge.node_a.under_attack = False
edge.node_b.under_attack = False
def get_adjacent_nodes(self, node: Node) -> [(Node, int)]:
"""
:param node: Node to search for
:return: An array of tuples (node, weight)
"""
edges_with_node = self.get_edges_with_node(node)
nodes = set()
for e in edges_with_node:
if e.node_a is node:
nodes.add((e.node_b, e.weight))
else:
nodes.add((e.node_a, e.weight))
return nodes
def is_alive(self):
nodes_alive = list(filter(lambda x: not x.is_infected, self.get_nodes()))
return len(nodes_alive) > 0
def update_survived(self):
if not self.is_alive():
return
self.rounds_survived += 1
def infect_step(self):
infected_nodes = list(filter(lambda n: n.is_infected, self.get_nodes()))
for node in infected_nodes:
adjacent_nodes = self.get_adjacent_nodes(node)
if self.use_weights:
to_be_infected = random.choices([n[0] for n in adjacent_nodes], weights=[n[1] for n in adjacent_nodes])[0]
else:
to_be_infected = random.choice([n[0] for n in adjacent_nodes])
to_be_infected.is_infected = True
to_be_infected.under_attack = True
self.update_survived()
def update(num, layout, g_repr, ax, our_graph: Graph):
"""
This function is called every 'step', so if you wish to update the graph, do it here
"""
if not our_graph.is_alive():
return
if num != 0:
our_graph.infect_step()
ax.clear()
for n in our_graph.get_nodes():
n.is_infected = bool(random.getrandbits(1))
ax.set_title(f'Step: {num}', loc='right', fontsize=30)
colors = ['red' if n.is_infected else 'blue' for n in g_repr]
nx.draw_networkx(g_repr, ax=ax, pos=layout, node_color=colors, with_labels=False)
edgecolors = ['black' if n.under_attack else 'none' for n in g_repr]
linewidths = [3 if c == 'black' else 0 for c in edgecolors]
sizes = [300 if n.is_infected else 150 for n in g_repr]
nx.draw(
g_repr,
ax=ax,
pos=layout,
node_color=colors,
linewidths=linewidths,
edgecolors=edgecolors,
with_labels=False,
node_size=sizes,
alpha=0.7,
)
our_graph.clear_attacked()
def do_graph_animation(output_file_name: str, in_graph: Graph, frame_count: int):
def do_graph_animation(output_file_name: str, in_graph: Graph, frame_count: int, layout):
g_repr = nx.Graph()
# Convert our graph class into tuples understood by networkx
g_repr.add_edges_from([e.as_tuple() for e in in_graph.edges])
layout = nx.spring_layout(g_repr)
layout = layout(g_repr)
fig, ax = plt.subplots()
anim = animation.FuncAnimation(fig, update, frames=frame_count, fargs=(layout, g_repr, ax, in_graph))
fig.set_figwidth(8)
fig.set_figheight(8)
anim = animation.FuncAnimation(
fig, update, frames=frame_count, interval=500, fargs=(layout, g_repr, ax, in_graph)
)
anim.save(output_file_name)
plt.style.use('seaborn')
plt.show()
def bus_network(n=30) -> Graph:
def degree_avg(edges, digits=2):
degrees = {}
for e in edges:
degrees[e.node_a] = degrees.get(e.node_a, 0) + 1
degrees[e.node_b] = degrees.get(e.node_b, 0) + 1
return round(mean(degrees.values()), digits)
def bus_network(n=30, infected_idx=0) -> tuple[Graph, float, int]:
network = Graph()
nodes = [Node() for _ in range(n)]
nodes[infected_idx].is_infected = True
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
network.add_edges(edges)
return network
return network, degree_avg(edges), n
def rank_avg(edges, digits=2):
ranks = {}
for e in edges:
ranks[e.node_a] = ranks.get(e.node_a, 0) + 1
ranks[e.node_b] = ranks.get(e.node_b, 0) + 1
return round(mean(ranks.values()), digits)
def star_network(cluster_count=5, starsize=6) -> tuple[Graph, float]:
def star_network(cluster_count=5, starsize=6, use_weights=False) -> tuple[Graph, float, int]:
node_count = cluster_count + cluster_count * starsize + 1
nodes = [Node() for _ in range(node_count)]
nodes[starsize-1].is_infected = True
edges = []
for x in range(cluster_count):
center_node = x * starsize + x
edges += [Edge(nodes[center_node], nodes[i], 1.0) for i in range(center_node + 1, center_node + starsize + 1)]
vulnerability = 1.0 if not use_weights else max(1.0, starsize)
edges += [Edge(nodes[center_node], nodes[i], vulnerability) for i in range(center_node + 1, center_node + starsize + 1)]
edges.append(Edge(nodes[-1], nodes[center_node], 1.0))
network = Graph()
network.add_edges(edges)
return network, rank_avg(edges)
return network, degree_avg(edges), node_count
def ring_network(n=30) -> tuple[Graph, float, int]:
network = Graph()
nodes = [Node() for _ in range(n)]
nodes[0].is_infected = True
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
end_edge = Edge(nodes[n - 1], nodes[0], 1.0)
edges.append(end_edge)
network.add_edges(edges)
return network, degree_avg(edges), n
def summary(average_degrees: list[float], propagation_speeds: list[float]) -> None:
fig, ax = plt.subplots()
ax.plot(average_degrees, propagation_speeds)
ax.set(xlabel='Average degree', ylabel='Propagation speed', title='Summary')
fig.savefig("summary.png")
plt.show()
def bus_experiment():
degrees = []
speeds = []
sizes = [0, 8, 15]
for i in sizes:
bus, bus_avg_degree, node_count = bus_network(20 + i)
do_graph_animation(f'bus{i}.gif', bus, 90, nx.spring_layout)
speeds.append(bus.rounds_survived / node_count)
degrees.append(bus_avg_degree)
print(f"\n{node_count} NODE bus")
print(f"average degree = {bus_avg_degree}")
print(f"propagation speed = {round(speeds[-1], 2)}")
print(f"bus{i} rounds survived = {bus.rounds_survived + 1}")
summary(degrees, speeds)
def ring_experiment():
degrees = []
speeds = []
sizes = [0, 8, 15]
for i in sizes:
ring, ring_avg_degree, node_count = ring_network(20 + i)
do_graph_animation(f'ring{i}.gif', ring, 90, nx.circular_layout)
speeds.append(ring.rounds_survived / node_count)
degrees.append(ring_avg_degree)
print(f"\n{node_count} NODE ring")
print(f"average degree = {ring_avg_degree}")
print(f"propagation speed = {round(speeds[-1], 2)}")
print(f"ring{i} rounds survived = {ring.rounds_survived + 1}")
def star_experiment():
degrees = []
speeds = []
sizes = range(0, 8, 2)
for i in sizes:
star, star_avg_degree, node_count = star_network(cluster_count=3 + i, starsize=3 + i)
do_graph_animation(f'star{i}.gif', star, 120, nx.kamada_kawai_layout)
speeds.append(star.rounds_survived / node_count)
degrees.append(star_avg_degree)
print(f"\n{node_count} NODE STAR")
print(f"average degree = {star_avg_degree}")
print(f"propagation speed = {round(speeds[-1], 2)}")
print(f"star{i} rounds survived = {star.rounds_survived + 1}")
summary(degrees, speeds)
def weighted_star_experiment():
degrees = []
speeds = []
sizes = range(0, 8, 2)
for i in sizes:
star, star_avg_degree, node_count = star_network(cluster_count=3 + i, starsize=3 + i, use_weights=True)
do_graph_animation(f'star_weighted{i}.gif', star, 120, nx.kamada_kawai_layout)
speeds.append(star.rounds_survived / node_count)
degrees.append(star_avg_degree)
print(f"\n{node_count} NODE STAR")
print(f"average degree = {star_avg_degree}")
print(f"propagation speed = {round(speeds[-1], 2)}")
print(f"star{i} rounds survived = {star.rounds_survived + 1}")
summary(degrees, speeds)
def main():
network = Graph()
nodes = [Node(True), Node(), Node(), Node(True), Node()]
network.add_edges([
Edge(nodes[1], nodes[0], 0.02),
Edge(nodes[1], nodes[2], 0.2),
Edge(nodes[2], nodes[0], 0.7),
Edge(nodes[3], nodes[2], 0.2),
Edge(nodes[3], nodes[1], 0.2),
Edge(nodes[4], nodes[3], 0.2)
])
do_graph_animation('test.gif', network, 5)
bus = bus_network()
do_graph_animation('bus.gif', bus, 5)
star, star_avg_rank = star_network()
do_graph_animation('star.gif', star, 5)
bus_experiment()
ring_experiment()
star_experiment()
weighted_star_experiment()
if __name__ == "__main__":