import random from statistics import mean import matplotlib.pyplot as plt import networkx as nx from matplotlib import animation class Node: def __init__(self, is_infected=False): self.id = random.randint(1, 2000000) self.is_infected = is_infected self.under_attack = False def as_tuple(self): return self.id, self.is_infected def __repr__(self): return f'id: {self.id}, infected: {self.is_infected}' class Edge: def __init__(self, node_a: Node, node_b: Node, weight: float): self.node_a = node_a self.node_b = node_b self.weight = weight def as_tuple(self): return self.node_a, self.node_b, {'weight': self.weight} def has_node(self, node: Node) -> bool: return self.node_a is node or self.node_b is node class Graph: def __init__(self, use_weights=False): self.edges = [] self.use_weights = use_weights self.rounds_survived = 0 def add_edge(self, edge: Edge): self.edges.append(edge) def add_edges(self, edges: [Edge]): [self.edges.append(e) for e in edges] def get_nodes(self) -> [Node]: nodes = set() for edge in self.edges: nodes.add(edge.node_a) nodes.add(edge.node_b) return nodes def clear_attacked(self) -> None: for edge in self.edges: edge.node_a.under_attack = False edge.node_b.under_attack = False def get_adjacent_nodes(self, node: Node) -> [(Node, int)]: """ :param node: Node to search for :return: An array of tuples (node, weight) """ edges_with_node = filter(lambda ed: ed.has_node(node), self.edges) nodes = set() for e in edges_with_node: if e.node_a is node: nodes.add((e.node_b, e.weight)) else: nodes.add((e.node_a, e.weight)) return nodes def is_alive(self): nodes_alive = list(filter(lambda x: not x.is_infected, self.get_nodes())) return len(nodes_alive) > 0 def update_survived(self): if not self.is_alive(): return self.rounds_survived += 1 def infect_step(self): infected_nodes = list(filter(lambda n: n.is_infected, self.get_nodes())) for node in infected_nodes: adjacent_nodes = self.get_adjacent_nodes(node) if self.use_weights: to_be_infected = random.choices([n[0] for n in adjacent_nodes], weights=[n[1] for n in adjacent_nodes])[0] else: to_be_infected = random.choice([n[0] for n in adjacent_nodes]) to_be_infected.is_infected = True to_be_infected.under_attack = True self.update_survived() def update(num, layout, g_repr, ax, our_graph: Graph): """ This function is called every 'step', so if you wish to update the graph, do it here """ if not our_graph.is_alive(): return if num != 0: our_graph.infect_step() ax.clear() ax.set_title(f'Step: {num}', loc='right', fontsize=30) colors = ['red' if n.is_infected else 'blue' for n in g_repr] edgecolors = ['black' if n.under_attack else 'none' for n in g_repr] linewidths = [3 if c == 'black' else 0 for c in edgecolors] sizes = [300 if n.is_infected else 150 for n in g_repr] nx.draw( g_repr, ax=ax, pos=layout, node_color=colors, linewidths=linewidths, edgecolors=edgecolors, with_labels=False, node_size=sizes, alpha=0.7, ) our_graph.clear_attacked() def do_graph_animation(output_file_name: str, in_graph: Graph, frame_count: int, layout): g_repr = nx.Graph() # Convert our graph class into tuples understood by networkx g_repr.add_edges_from([e.as_tuple() for e in in_graph.edges]) layout = layout(g_repr) fig, ax = plt.subplots() fig.set_figwidth(8) fig.set_figheight(8) anim = animation.FuncAnimation( fig, update, frames=frame_count, interval=500, fargs=(layout, g_repr, ax, in_graph) ) anim.save(output_file_name) plt.style.use('seaborn') plt.show() def degree_avg(edges, digits=2): degrees = {} for e in edges: degrees[e.node_a] = degrees.get(e.node_a, 0) + 1 degrees[e.node_b] = degrees.get(e.node_b, 0) + 1 return round(mean(degrees.values()), digits) def bus_network(n=30, infected_idx=0) -> tuple[Graph, float, int]: network = Graph() nodes = [Node() for _ in range(n)] nodes[infected_idx].is_infected = True edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)] network.add_edges(edges) return network, degree_avg(edges), n def star_network(cluster_count=5, starsize=6) -> tuple[Graph, float, int]: node_count = cluster_count + cluster_count * starsize + 1 nodes = [Node() for _ in range(node_count)] nodes[starsize-1].is_infected = True edges = [] for x in range(cluster_count): center_node = x * starsize + x edges += [Edge(nodes[center_node], nodes[i], 1.0) for i in range(center_node + 1, center_node + starsize + 1)] edges.append(Edge(nodes[-1], nodes[center_node], 1.0)) network = Graph() network.add_edges(edges) return network, degree_avg(edges), node_count def ring_network(n=30) -> tuple[Graph, float, int]: network = Graph() nodes = [Node() for _ in range(n)] nodes[0].is_infected = True edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)] end_edge = Edge(nodes[n - 1], nodes[0], 1.0) edges.append(end_edge) network.add_edges(edges) return network, degree_avg(edges), n def summary(average_degrees: list[float], propagation_speeds: list[float]) -> None: fig, ax = plt.subplots() ax.plot(average_degrees, propagation_speeds) ax.set(xlabel='Average degree', ylabel='Propagation speed', title='Summary') fig.savefig("summary.png") plt.show() def experiment(network, avg_degree, node_count): degrees = [] speeds = [] sizes = [0, 8, 15] for i in sizes: do_graph_animation(f'bus{i}.gif', network, 90, nx.spiral_layout) speeds.append(network.rounds_survived / node_count) degrees.append(avg_degree) print(f"\n{node_count} NODE BUS") print(f"average degree = {avg_degree}") print(f"propagation speed = {round(speeds[-1], 2)}") print(f"bus_{i} rounds survived = {network.rounds_survived + 1}") summary(degrees, speeds) def bus_experiment(): bus, bus_avg_degree, node_count = bus_network(20 + i) experiment(bus, bus_avg_degree, node_count) def ring_experiment(): ring, ring_avg_degree, node_count = ring_network(20 + i) experiment(ring, ring_avg_degree, node_count) def star_experiment(): star, star_avg_degree, node_count = star_network(cluster_count=3 + i, starsize=3 + i) experiment(star, star_avg_degree, node_count) def main(): bus_experiment() ring_experiment() star_experiment() if __name__ == "__main__": main()