Network_attack_propagation/network_attack_propagation.py

137 lines
3.3 KiB
Python

import random
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib import animation
class Node:
def __init__(self, is_infected=False):
self.id = random.randint(1, 2000000)
self.is_infected = is_infected
def as_tuple(self):
return self.id, self.is_infected
def __repr__(self):
return f'id: {self.id}, infected: {self.is_infected}'
class Edge:
def __init__(self, node_a: Node, node_b: Node, weight: float):
self.node_a = node_a
self.node_b = node_b
self.weight = weight
def as_tuple(self):
return self.node_a, self.node_b, {'weight': self.weight}
class Graph:
def __init__(self):
self.edges = []
def add_edge(self, edge: Edge):
self.edges.append(edge)
def add_edges(self, edges: [Edge]):
[self.edges.append(e) for e in edges]
def get_nodes(self) -> [Node]:
nodes = set()
for edge in self.edges:
nodes.add(edge.node_a)
nodes.add(edge.node_b)
return nodes
def update(num, layout, g_repr, ax, our_graph: Graph):
"""
This function is called every 'step', so if you wish to update the graph, do it here
"""
ax.clear()
for n in our_graph.get_nodes():
n.is_infected = bool(random.getrandbits(1))
colors = ['red' if n.is_infected else 'blue' for n in g_repr]
sizes = [50 if n.is_infected else 1 for n in g_repr]
nx.draw(
g_repr,
ax=ax,
pos=layout,
node_color=colors,
with_labels=False,
node_size=sizes,
node_shape="s",
alpha=0.5,
linewidths=40,
)
def do_graph_animation(output_file_name: str, in_graph: Graph, frame_count: int, layout):
g_repr = nx.Graph()
# Convert our graph class into tuples understood by networkx
g_repr.add_edges_from([e.as_tuple() for e in in_graph.edges])
layout = layout(g_repr)
fig, ax = plt.subplots()
fig.set_figwidth(15)
fig.set_figheight(15)
anim = animation.FuncAnimation(
fig, update, frames=frame_count, fargs=(layout, g_repr, ax, in_graph)
)
anim.save(output_file_name)
plt.style.use('seaborn')
plt.show()
def bus_network(n=30) -> Graph:
network = Graph()
nodes = [Node() for _ in range(n)]
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
network.add_edges(edges)
return network
def ring_network(n=30) -> Graph:
network = Graph()
nodes = [Node() for _ in range(n)]
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
end_edge = Edge(nodes[n - 1], nodes[0], 1.0)
edges.append(end_edge)
network.add_edges(edges)
return network
def main():
network = Graph()
nodes = [Node(True), Node(), Node(), Node(True), Node()]
network.add_edges(
[
Edge(nodes[1], nodes[0], 0.02),
Edge(nodes[1], nodes[2], 0.2),
Edge(nodes[2], nodes[0], 0.7),
Edge(nodes[3], nodes[2], 0.2),
Edge(nodes[3], nodes[1], 0.2),
Edge(nodes[4], nodes[3], 0.2),
]
)
do_graph_animation('test.gif', network, 5, nx.spring_layout)
bus = bus_network()
do_graph_animation('bus.gif', bus, 5, nx.spiral_layout)
ring = ring_network()
do_graph_animation('ring.gif', ring, 5, nx.circular_layout)
if __name__ == "__main__":
main()