challenging-america-word-ga.../run.py

81 lines
1.8 KiB
Python
Raw Normal View History

2023-06-15 20:28:58 +02:00
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
device = torch.device('cuda')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model: GPT2LMHeadModel = GPT2LMHeadModel.from_pretrained('gpt2', pad_token_id=tokenizer.eos_token_id)
model.to(device)
# In[2]:
import lzma
def read_xz_file(fname):
with lzma.open(fname, mode='rt', encoding='utf-8') as f:
return [line.strip() for line in f.readlines()]
# In[3]:
dev_input_raw = read_xz_file('dev-0/in.tsv.xz')
test_input_raw = read_xz_file('test-A/in.tsv.xz')
# In[4]:
def get_contexts(input_text):
all_fields = input_text.replace(r'\n', ' ').split('\t')
return {'left': all_fields[6], 'right': all_fields[7]}
dev_input_contexts = [get_contexts(input_text) for input_text in dev_input_raw]
# In[5]:
test_input_contexts = [get_contexts(input_text) for input_text in test_input_raw]
# In[6]:
from tqdm import tqdm
tokenizer.truncation_side = 'left'
def predict_words(dataset):
preds = []
for entry in tqdm(dataset):
text = f"{entry['left']}"
src = tokenizer.encode(text, return_tensors="pt", truncation=True).to(device)
output = model.generate(src, max_length=len(src[0]) + 1, do_sample=True, top_k=0, temperature=0.8,
num_return_sequences=1, no_repeat_ngram_size=2)
generated_word = tokenizer.decode(output[0], skip_special_tokens=True).split(' ')[-1]
preds.append(f'{generated_word.strip()}:0.99 :0.01')
return preds
# In[7]:
dev_preds = predict_words(dev_input_contexts)
with open('dev-0/out.tsv', 'w') as f:
f.writelines(line + '\n' for line in dev_preds)
# In[8]:
test_preds = predict_words(test_input_contexts)
with open('test-A/out.tsv', 'w') as f:
f.writelines(line + '\n' for line in test_preds)