Add two sided GRU + results

This commit is contained in:
Marcin Kostrzewski 2023-09-25 12:14:32 +02:00
parent b5e4119265
commit 22b9d58cd7
3 changed files with 18224 additions and 17933 deletions

File diff suppressed because it is too large Load Diff

291
run-gru.py Normal file
View File

@ -0,0 +1,291 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
from collections import Counter
import torch
from torch.utils.data import Dataset
device = torch.device("cuda")
# In[2]:
import lzma
def read_xz_file(fname):
with lzma.open(fname, mode='rt', encoding='utf-8') as f:
return [line.strip() for line in f.readlines()]
def read_file(fname):
with open(fname, mode='rt', encoding='utf-8') as f:
return [line.strip() for line in f.readlines()]
def get_contexts(input_text):
all_fields = input_text.replace(r'\n', ' ').split('\t')
return {'left': all_fields[6], 'right': all_fields[7]}
def compose_sentences(raw_input, labels) -> list[dict[str, str]]:
result = []
for input, label in zip(raw_input, labels):
context = get_contexts(input)
result.append(f'{context["left"]} {input} {context["right"]}')
return result
# In[3]:
train_input_raw = read_xz_file('challenging-america-word-gap-prediction/train/in.tsv.xz')
train_labels = read_file('challenging-america-word-gap-prediction/train/expected.tsv')
train_sentences = compose_sentences(train_input_raw, train_labels)
# In[21]:
unk_token = '<unk>'
# In[26]:
class BaseDataset(torch.utils.data.Dataset):
def __init__(
self,
sequence_length,
sentences: list[str]
):
self.sequence_length = sequence_length
self.words = self.load(sentences)
self.uniq_words = self.get_uniq_words()
self.index_to_word = {index: word for index, word in enumerate(self.uniq_words)}
self.word_to_index = {word: index for index, word in enumerate(self.uniq_words)}
self.word_to_index[unk_token] = len(self.uniq_words)
self.index_to_word[len(self.uniq_words)] = unk_token
self.words_indexes = [self.word_to_index[w] for w in self.words]
def get_uniq_words(self):
word_counts = Counter(self.words)
return sorted(word_counts, key=word_counts.get, reverse=True)
def load(self, sentences: list[str]):
raise NotImplementedError
def __len__(self):
return len(self.words_indexes) - self.sequence_length
def __getitem__(self, index):
return (
torch.tensor(self.words_indexes[index:index + self.sequence_length]),
torch.tensor(self.words_indexes[index + 1:index + self.sequence_length + 1]),
)
# In[27]:
class ForwardDataset(BaseDataset):
def load(self, sentences):
words = [x.rstrip() for x in sentences if x.strip()]
words = ' '.join(words).lower()
words = words.split(' ')
return words
# In[28]:
class BackwardsDataset(ForwardDataset):
def load(self, sentences):
words = super(BackwardsDataset, self).load(sentences)
words.reverse()
return words
# In[29]:
train_forwards_dataset = ForwardDataset(6, train_sentences)
train_backwards_dataset = BackwardsDataset(6, train_sentences)
# In[8]:
from torch import nn, optim
class LanguageModel(nn.Module):
def __init__(self,
vocabulary_size=12800,
embedding_size=128,
hidden_size=256,
num_layers=4
):
super(LanguageModel, self).__init__()
self.embedding_size = embedding_size
self.embedding = nn.Embedding(vocabulary_size, embedding_size)
self.gru = nn.GRU(
input_size=self.embedding_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=0.2,
batch_first=True
)
self.linear = nn.Linear(hidden_size, vocabulary_size)
def forward(self, x, h=None):
embeds = self.embedding(x)
out, h = self.gru(embeds, h)
out = self.linear(out)
return out, h
# In[9]:
forward_model = LanguageModel(len(train_forwards_dataset)).to(device)
# In[10]:
from torch.utils.data import DataLoader
from torch import save as save_model
def train(model, dataset, max_epochs, batch_size, out_file):
model.train()
dataloader = DataLoader(dataset, batch_size=batch_size)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(max_epochs):
for batch, (x, y) in enumerate(dataloader):
optimizer.zero_grad()
x = x.to(device)
y = y.to(device)
y_pred, _ = model(x)
loss = criterion(y_pred.transpose(1, 2), y)
loss.backward()
optimizer.step()
print({'epoch': epoch, 'update in batch': batch, '/': len(dataloader), 'loss': loss.item()})
save_model(model.state_dict(), out_file)
# In[11]:
train(forward_model, train_forwards_dataset, 10, 64, 'forward_model')
# In[12]:
backwards_model = LanguageModel(len(train_backwards_dataset)).to(device)
train(backwards_model, train_backwards_dataset, 10, 64, 'backwards_model')
# In[13]:
dev_input_raw = read_xz_file('challenging-america-word-gap-prediction/dev-0/in.tsv.xz')
dev_input_contexts = [get_contexts(input_text) for input_text in dev_input_raw]
test_input_raw = read_xz_file('challenging-america-word-gap-prediction/test-A/in.tsv.xz')
test_input_contexts = [get_contexts(input_text) for input_text in test_input_raw]
# In[82]:
from torch import topk
from tqdm import tqdm
import math
def get_pairs_tokens_probs(model, sentence, dataset, top):
preds = {}
src = torch.tensor([[dataset.word_to_index.get(w, dataset.word_to_index[unk_token]) for w in sentence]]).to(device)
output = model(src)
top = topk(output[0][-1][-1], top)
probs, tokens = top.values.tolist(), [dataset.index_to_word[idx] for idx in top.indices.tolist()]
accumulated_probability = 0
for prob, token in zip(probs, tokens):
accumulated_probability += prob
preds[token.strip()] = prob
preds[''] = 1 - accumulated_probability
return preds
def trim_results(results: dict, top):
"""
Przycinamy resultaty do `top` najbardziej prawdopodobnych wystąpień;
prawdopodobieństwo wystąpienia pozostałych tokenów obliczamy na nowo
"""
new = dict(sorted(results.items(), key=lambda item: item[1], reverse=True))
del new['']
new = {k[0]: k[1] for k in sorted(new.items(), key=lambda item: item[1], reverse=True)[:top-1]}
new[''] = 1.0 - math.fsum(map(lambda x: float(x), new.values()))
return new
def merge_results(result: dict, other: dict, top):
final = {}
for left, right in zip(result.items(), other.items()):
if left[0] in final:
final[left[0]] = (final[left[0]] + left[1]) / 2
else:
final[left[0]] = left[1]
if right[0] in final:
final[right[0]] = (final[right[0]] + right[1]) / 2
else:
final[right[0]] = right[1]
return trim_results(final, top)
def predict_words(dataset: BaseDataset, fwd_model: LanguageModel, back_model: LanguageModel, sentences: list[dict],
top=50):
preds = []
for sentence in tqdm(sentences):
left = sentence['left'].split(' ')
right = sentence['right'].split(' ')
left_results = get_pairs_tokens_probs(fwd_model, left, dataset, top)
right_results = get_pairs_tokens_probs(back_model, right, dataset, top)
merged_results = merge_results(left_results, right_results, top)
results_as_string = ''
for prob, token in merged_results.items():
results_as_string += f'{token}:{prob} '
preds.append(results_as_string)
return preds
# In[83]:
dev_preds = predict_words(train_forwards_dataset, forward_model, backwards_model, dev_input_contexts)
with open('challenging-america-word-gap-prediction/dev-0/out.tsv', 'w') as f:
f.writelines(line + '\n' for line in dev_preds)
# In[1]:
test_preds = predict_words(test_input_contexts)
with open('challenging-america-word-gap-prediction/test-A/out.tsv', 'w') as f:
f.writelines(line + '\n' for line in test_preds)

File diff suppressed because it is too large Load Diff