Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
22b9d58cd7 | |||
b5e4119265 | |||
e7951d0867 |
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
@ -1,233 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoConfig
|
||||
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
import lzma
|
||||
|
||||
|
||||
def read_xz_file(fname):
|
||||
with lzma.open(fname, mode='rt', encoding='utf-8') as f:
|
||||
return [line.strip() for line in f.readlines()]
|
||||
|
||||
|
||||
def read_file(fname):
|
||||
with open(fname, mode='rt', encoding='utf-8') as f:
|
||||
return [line.strip() for line in f.readlines()]
|
||||
|
||||
|
||||
def get_contexts(input_text):
|
||||
all_fields = input_text.replace(r'\n', ' ').split('\t')
|
||||
return {'left': all_fields[6], 'right': all_fields[7]}
|
||||
|
||||
|
||||
bos = '<|endoftext|>'
|
||||
eos = '<|EOS|>'
|
||||
|
||||
|
||||
def compose_sentences(raw_input, labels):
|
||||
result = []
|
||||
for input, label in zip(raw_input, labels):
|
||||
context = get_contexts(input)
|
||||
result.append(f'{bos} {context["left"]} {input} {eos}')
|
||||
result.append(f'{bos} {input} {context["right"]} {eos}')
|
||||
return result
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
pad = '<|pad|>'
|
||||
special_tokens_dict = {'eos_token': eos, 'bos_token': bos, 'pad_token': pad}
|
||||
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
||||
num_add_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
class AmericaDataset(Dataset):
|
||||
def __init__(self, tokenizer, data):
|
||||
self.tokenizer = tokenizer
|
||||
self.sentences = []
|
||||
for entry in data:
|
||||
self.sentences.append(
|
||||
torch.tensor(self.tokenizer.encode(entry, padding=True))
|
||||
)
|
||||
def __len__(self):
|
||||
return len(self.sentences)
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.sentences[item]
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
train_input_raw = read_xz_file('challenging-america-word-gap-prediction/train/in.tsv.xz')
|
||||
train_labels = read_file('challenging-america-word-gap-prediction/train/expected.tsv')
|
||||
train_sentences = compose_sentences(train_input_raw, train_labels)
|
||||
train_dataset = AmericaDataset(tokenizer, train_sentences)
|
||||
|
||||
|
||||
# In[11]:
|
||||
|
||||
|
||||
config = AutoConfig.from_pretrained('distilgpt2', bos_token_id=tokenizer.bos_token_id,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id, output_hidden_states=False, return_dict_in_generate=True)
|
||||
model = GPT2LMHeadModel.from_pretrained('distilgpt2', config=config)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
device = torch.device('cuda')
|
||||
|
||||
|
||||
model.to(device)
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
def pack_tensor(new_tensor, packed_tensor, max_seq_len):
|
||||
if packed_tensor is None:
|
||||
return new_tensor, True, None
|
||||
if new_tensor.size()[1] + packed_tensor.size()[1] > max_seq_len:
|
||||
return packed_tensor, False, new_tensor
|
||||
else:
|
||||
packed_tensor = torch.cat([new_tensor, packed_tensor[:, 1:]], dim=1)
|
||||
return packed_tensor, True, None
|
||||
|
||||
|
||||
# In[9]:
|
||||
|
||||
|
||||
import os
|
||||
from transformers import AdamW, get_linear_schedule_with_warmup
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def train(
|
||||
model,
|
||||
dataset,
|
||||
batch_size=16, epochs=5, lr=2e-5,
|
||||
warmup_steps=200,
|
||||
output_dir=".", output_prefix="gpt2",
|
||||
save_model_on_epoch=False,
|
||||
):
|
||||
device = torch.device("cuda")
|
||||
model = model.to(device)
|
||||
model.train()
|
||||
|
||||
optimizer = AdamW(model.parameters(), lr=lr)
|
||||
scheduler = get_linear_schedule_with_warmup(
|
||||
optimizer, num_warmup_steps=warmup_steps, num_training_steps=-1
|
||||
)
|
||||
|
||||
loss = 0
|
||||
accumulating_batch_count = 0
|
||||
input_tensor = None
|
||||
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
||||
|
||||
for epoch in range(epochs):
|
||||
|
||||
print(f"Training epoch {epoch}")
|
||||
print(loss)
|
||||
for idx, entry in tqdm(enumerate(dataloader)):
|
||||
(input_tensor, carry_on, remainder) = pack_tensor(entry, input_tensor, 1024)
|
||||
|
||||
if carry_on and idx != len(dataset) - 1:
|
||||
continue
|
||||
|
||||
input_tensor = input_tensor.to(device)
|
||||
outputs = model(input_tensor, labels=input_tensor)
|
||||
loss = outputs[0]
|
||||
loss.backward()
|
||||
|
||||
if (accumulating_batch_count % batch_size) == 0:
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
model.zero_grad()
|
||||
|
||||
accumulating_batch_count += 1
|
||||
input_tensor = None
|
||||
if save_model_on_epoch:
|
||||
torch.save(
|
||||
model.state_dict(),
|
||||
os.path.join(output_dir, f"{output_prefix}-{epoch}.pt"),
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
# In[12]:
|
||||
|
||||
|
||||
model = train(model, train_dataset)
|
||||
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
dev_input_raw = read_xz_file('challenging-america-word-gap-prediction/dev-0/in.tsv.xz')
|
||||
dev_input_contexts = [get_contexts(input_text) for input_text in dev_input_raw]
|
||||
test_input_raw = read_xz_file('challenging-america-word-gap-prediction/test-A/in.tsv.xz')
|
||||
test_input_contexts = [get_contexts(input_text) for input_text in test_input_raw]
|
||||
|
||||
|
||||
# In[15]:
|
||||
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
tokenizer.truncation_side = 'left'
|
||||
|
||||
blacklist = ['ia', 'ix', 'io',
|
||||
'ik'] # Te tokeny się prawie zawsze powtarzają, a nie są to żadne słowa w języku angielskim.
|
||||
|
||||
|
||||
def predict_words(dataset):
|
||||
preds = []
|
||||
for entry in tqdm(dataset):
|
||||
text = f"{entry['left']}"
|
||||
src = tokenizer.encode(text, return_tensors="pt", truncation=True).to(device)
|
||||
output = model.generate(src, max_length=len(src[0]) + 1, do_sample=True, top_k=0, temperature=0.8,
|
||||
num_return_sequences=1, no_repeat_ngram_size=2, output_scores=True)
|
||||
probs, idxs = torch.softmax(output.scores[0][-1], dim=0).topk(50)
|
||||
current_output = ''
|
||||
accumulated_probability = 0
|
||||
for prob, token_id in zip(probs, idxs):
|
||||
token = tokenizer.decode(token_id, skip_special_tokens=True).split(' ')[-1]
|
||||
if not token.isalnum() or token in blacklist:
|
||||
continue
|
||||
prob_value = prob.item()
|
||||
accumulated_probability += prob_value
|
||||
current_output += f'{token.strip()}:{prob_value} '
|
||||
current_output += f':{1 - accumulated_probability}'
|
||||
preds.append(current_output)
|
||||
return preds
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
dev_preds = predict_words(dev_input_contexts)
|
||||
with open('challenging-america-word-gap-prediction/dev-0/out.tsv', 'w') as f:
|
||||
f.writelines(line + '\n' for line in dev_preds)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
test_preds = predict_words(test_input_contexts)
|
||||
with open('challenging-america-word-gap-prediction/test-A/out.tsv', 'w') as f:
|
||||
f.writelines(line + '\n' for line in test_preds)
|
||||
|
291
run-gru.py
Normal file
291
run-gru.py
Normal file
@ -0,0 +1,291 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
from collections import Counter
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
device = torch.device("cuda")
|
||||
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
import lzma
|
||||
|
||||
|
||||
def read_xz_file(fname):
|
||||
with lzma.open(fname, mode='rt', encoding='utf-8') as f:
|
||||
return [line.strip() for line in f.readlines()]
|
||||
|
||||
|
||||
def read_file(fname):
|
||||
with open(fname, mode='rt', encoding='utf-8') as f:
|
||||
return [line.strip() for line in f.readlines()]
|
||||
|
||||
|
||||
def get_contexts(input_text):
|
||||
all_fields = input_text.replace(r'\n', ' ').split('\t')
|
||||
return {'left': all_fields[6], 'right': all_fields[7]}
|
||||
|
||||
|
||||
def compose_sentences(raw_input, labels) -> list[dict[str, str]]:
|
||||
result = []
|
||||
for input, label in zip(raw_input, labels):
|
||||
context = get_contexts(input)
|
||||
result.append(f'{context["left"]} {input} {context["right"]}')
|
||||
return result
|
||||
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
train_input_raw = read_xz_file('challenging-america-word-gap-prediction/train/in.tsv.xz')
|
||||
train_labels = read_file('challenging-america-word-gap-prediction/train/expected.tsv')
|
||||
train_sentences = compose_sentences(train_input_raw, train_labels)
|
||||
|
||||
|
||||
# In[21]:
|
||||
|
||||
|
||||
unk_token = '<unk>'
|
||||
|
||||
|
||||
# In[26]:
|
||||
|
||||
|
||||
class BaseDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
sequence_length,
|
||||
sentences: list[str]
|
||||
):
|
||||
self.sequence_length = sequence_length
|
||||
self.words = self.load(sentences)
|
||||
self.uniq_words = self.get_uniq_words()
|
||||
|
||||
self.index_to_word = {index: word for index, word in enumerate(self.uniq_words)}
|
||||
self.word_to_index = {word: index for index, word in enumerate(self.uniq_words)}
|
||||
self.word_to_index[unk_token] = len(self.uniq_words)
|
||||
self.index_to_word[len(self.uniq_words)] = unk_token
|
||||
|
||||
self.words_indexes = [self.word_to_index[w] for w in self.words]
|
||||
|
||||
def get_uniq_words(self):
|
||||
word_counts = Counter(self.words)
|
||||
return sorted(word_counts, key=word_counts.get, reverse=True)
|
||||
|
||||
def load(self, sentences: list[str]):
|
||||
raise NotImplementedError
|
||||
|
||||
def __len__(self):
|
||||
return len(self.words_indexes) - self.sequence_length
|
||||
|
||||
def __getitem__(self, index):
|
||||
return (
|
||||
torch.tensor(self.words_indexes[index:index + self.sequence_length]),
|
||||
torch.tensor(self.words_indexes[index + 1:index + self.sequence_length + 1]),
|
||||
)
|
||||
|
||||
|
||||
# In[27]:
|
||||
|
||||
|
||||
class ForwardDataset(BaseDataset):
|
||||
def load(self, sentences):
|
||||
words = [x.rstrip() for x in sentences if x.strip()]
|
||||
words = ' '.join(words).lower()
|
||||
words = words.split(' ')
|
||||
return words
|
||||
|
||||
|
||||
# In[28]:
|
||||
|
||||
|
||||
class BackwardsDataset(ForwardDataset):
|
||||
def load(self, sentences):
|
||||
words = super(BackwardsDataset, self).load(sentences)
|
||||
words.reverse()
|
||||
return words
|
||||
|
||||
|
||||
# In[29]:
|
||||
|
||||
|
||||
train_forwards_dataset = ForwardDataset(6, train_sentences)
|
||||
train_backwards_dataset = BackwardsDataset(6, train_sentences)
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
from torch import nn, optim
|
||||
|
||||
|
||||
class LanguageModel(nn.Module):
|
||||
def __init__(self,
|
||||
vocabulary_size=12800,
|
||||
embedding_size=128,
|
||||
hidden_size=256,
|
||||
num_layers=4
|
||||
):
|
||||
super(LanguageModel, self).__init__()
|
||||
self.embedding_size = embedding_size
|
||||
self.embedding = nn.Embedding(vocabulary_size, embedding_size)
|
||||
self.gru = nn.GRU(
|
||||
input_size=self.embedding_size,
|
||||
hidden_size=hidden_size,
|
||||
num_layers=num_layers,
|
||||
dropout=0.2,
|
||||
batch_first=True
|
||||
)
|
||||
self.linear = nn.Linear(hidden_size, vocabulary_size)
|
||||
|
||||
def forward(self, x, h=None):
|
||||
embeds = self.embedding(x)
|
||||
out, h = self.gru(embeds, h)
|
||||
out = self.linear(out)
|
||||
return out, h
|
||||
|
||||
|
||||
# In[9]:
|
||||
|
||||
|
||||
forward_model = LanguageModel(len(train_forwards_dataset)).to(device)
|
||||
|
||||
|
||||
# In[10]:
|
||||
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
from torch import save as save_model
|
||||
|
||||
|
||||
def train(model, dataset, max_epochs, batch_size, out_file):
|
||||
model.train()
|
||||
|
||||
dataloader = DataLoader(dataset, batch_size=batch_size)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||
|
||||
for epoch in range(max_epochs):
|
||||
for batch, (x, y) in enumerate(dataloader):
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
|
||||
y_pred, _ = model(x)
|
||||
loss = criterion(y_pred.transpose(1, 2), y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print({'epoch': epoch, 'update in batch': batch, '/': len(dataloader), 'loss': loss.item()})
|
||||
save_model(model.state_dict(), out_file)
|
||||
|
||||
|
||||
# In[11]:
|
||||
|
||||
|
||||
train(forward_model, train_forwards_dataset, 10, 64, 'forward_model')
|
||||
|
||||
|
||||
# In[12]:
|
||||
|
||||
|
||||
backwards_model = LanguageModel(len(train_backwards_dataset)).to(device)
|
||||
train(backwards_model, train_backwards_dataset, 10, 64, 'backwards_model')
|
||||
|
||||
|
||||
# In[13]:
|
||||
|
||||
|
||||
dev_input_raw = read_xz_file('challenging-america-word-gap-prediction/dev-0/in.tsv.xz')
|
||||
dev_input_contexts = [get_contexts(input_text) for input_text in dev_input_raw]
|
||||
test_input_raw = read_xz_file('challenging-america-word-gap-prediction/test-A/in.tsv.xz')
|
||||
test_input_contexts = [get_contexts(input_text) for input_text in test_input_raw]
|
||||
|
||||
|
||||
# In[82]:
|
||||
|
||||
|
||||
from torch import topk
|
||||
from tqdm import tqdm
|
||||
import math
|
||||
|
||||
|
||||
def get_pairs_tokens_probs(model, sentence, dataset, top):
|
||||
preds = {}
|
||||
src = torch.tensor([[dataset.word_to_index.get(w, dataset.word_to_index[unk_token]) for w in sentence]]).to(device)
|
||||
output = model(src)
|
||||
top = topk(output[0][-1][-1], top)
|
||||
probs, tokens = top.values.tolist(), [dataset.index_to_word[idx] for idx in top.indices.tolist()]
|
||||
accumulated_probability = 0
|
||||
for prob, token in zip(probs, tokens):
|
||||
accumulated_probability += prob
|
||||
preds[token.strip()] = prob
|
||||
preds[''] = 1 - accumulated_probability
|
||||
return preds
|
||||
|
||||
|
||||
def trim_results(results: dict, top):
|
||||
"""
|
||||
Przycinamy resultaty do `top` najbardziej prawdopodobnych wystąpień;
|
||||
prawdopodobieństwo wystąpienia pozostałych tokenów obliczamy na nowo
|
||||
"""
|
||||
new = dict(sorted(results.items(), key=lambda item: item[1], reverse=True))
|
||||
del new['']
|
||||
new = {k[0]: k[1] for k in sorted(new.items(), key=lambda item: item[1], reverse=True)[:top-1]}
|
||||
new[''] = 1.0 - math.fsum(map(lambda x: float(x), new.values()))
|
||||
return new
|
||||
|
||||
|
||||
def merge_results(result: dict, other: dict, top):
|
||||
final = {}
|
||||
for left, right in zip(result.items(), other.items()):
|
||||
if left[0] in final:
|
||||
final[left[0]] = (final[left[0]] + left[1]) / 2
|
||||
else:
|
||||
final[left[0]] = left[1]
|
||||
if right[0] in final:
|
||||
final[right[0]] = (final[right[0]] + right[1]) / 2
|
||||
else:
|
||||
final[right[0]] = right[1]
|
||||
return trim_results(final, top)
|
||||
|
||||
|
||||
def predict_words(dataset: BaseDataset, fwd_model: LanguageModel, back_model: LanguageModel, sentences: list[dict],
|
||||
top=50):
|
||||
preds = []
|
||||
for sentence in tqdm(sentences):
|
||||
left = sentence['left'].split(' ')
|
||||
right = sentence['right'].split(' ')
|
||||
left_results = get_pairs_tokens_probs(fwd_model, left, dataset, top)
|
||||
right_results = get_pairs_tokens_probs(back_model, right, dataset, top)
|
||||
merged_results = merge_results(left_results, right_results, top)
|
||||
results_as_string = ''
|
||||
for prob, token in merged_results.items():
|
||||
results_as_string += f'{token}:{prob} '
|
||||
preds.append(results_as_string)
|
||||
return preds
|
||||
|
||||
|
||||
# In[83]:
|
||||
|
||||
|
||||
dev_preds = predict_words(train_forwards_dataset, forward_model, backwards_model, dev_input_contexts)
|
||||
with open('challenging-america-word-gap-prediction/dev-0/out.tsv', 'w') as f:
|
||||
f.writelines(line + '\n' for line in dev_preds)
|
||||
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
test_preds = predict_words(test_input_contexts)
|
||||
with open('challenging-america-word-gap-prediction/test-A/out.tsv', 'w') as f:
|
||||
f.writelines(line + '\n' for line in test_preds)
|
||||
|
87
run.py
87
run.py
@ -5,12 +5,8 @@
|
||||
|
||||
|
||||
import torch
|
||||
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
||||
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoConfig
|
||||
|
||||
device = torch.device('cuda')
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model: GPT2LMHeadModel = GPT2LMHeadModel.from_pretrained('gpt2', pad_token_id=tokenizer.eos_token_id)
|
||||
model.to(device)
|
||||
|
||||
# In[2]:
|
||||
|
||||
@ -23,14 +19,9 @@ def read_xz_file(fname):
|
||||
return [line.strip() for line in f.readlines()]
|
||||
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
dev_input_raw = read_xz_file('dev-0/in.tsv.xz')
|
||||
test_input_raw = read_xz_file('test-A/in.tsv.xz')
|
||||
|
||||
|
||||
# In[4]:
|
||||
def read_file(fname):
|
||||
with open(fname, mode='rt', encoding='utf-8') as f:
|
||||
return [line.strip() for line in f.readlines()]
|
||||
|
||||
|
||||
def get_contexts(input_text):
|
||||
@ -38,13 +29,53 @@ def get_contexts(input_text):
|
||||
return {'left': all_fields[6], 'right': all_fields[7]}
|
||||
|
||||
|
||||
dev_input_contexts = [get_contexts(input_text) for input_text in dev_input_raw]
|
||||
bos = '<|endoftext|>'
|
||||
eos = '<|EOS|>'
|
||||
|
||||
|
||||
def compose_sentences(raw_input, labels):
|
||||
result = []
|
||||
for input, label in zip(raw_input, labels):
|
||||
context = get_contexts(input)
|
||||
result.append(f'{bos} {context["left"]} {input} {eos}')
|
||||
result.append(f'{bos} {input} {context["right"]} {eos}')
|
||||
return result
|
||||
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
pad = '<|pad|>'
|
||||
special_tokens_dict = {'eos_token': eos, 'bos_token': bos, 'pad_token': pad}
|
||||
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
||||
num_add_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
||||
|
||||
|
||||
config = AutoConfig.from_pretrained('distilgpt2', bos_token_id=tokenizer.bos_token_id,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id, output_hidden_states=False, return_dict_in_generate=True)
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
model = GPT2LMHeadModel.from_pretrained('distilgpt2', config=config)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
device = torch.device('cuda')
|
||||
|
||||
model.to(device)
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
dev_input_raw = read_xz_file('challenging-america-word-gap-prediction/dev-0/in.tsv.xz')
|
||||
dev_input_contexts = [get_contexts(input_text) for input_text in dev_input_raw]
|
||||
test_input_raw = read_xz_file('challenging-america-word-gap-prediction/test-A/in.tsv.xz')
|
||||
test_input_contexts = [get_contexts(input_text) for input_text in test_input_raw]
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
@ -52,16 +83,28 @@ from tqdm import tqdm
|
||||
|
||||
tokenizer.truncation_side = 'left'
|
||||
|
||||
blacklist = ['ia', 'ix', 'io',
|
||||
'ik'] # Te tokeny się prawie zawsze powtarzają, a nie są to żadne słowa w języku angielskim.
|
||||
|
||||
def predict_words(dataset):
|
||||
preds = []
|
||||
for entry in tqdm(dataset):
|
||||
text = f"{entry['left']}"
|
||||
text = f"{entry['right']}"
|
||||
src = tokenizer.encode(text, return_tensors="pt", truncation=True).to(device)
|
||||
output = model.generate(src, max_length=len(src[0]) + 1, do_sample=True, top_k=0, temperature=0.8,
|
||||
num_return_sequences=1, no_repeat_ngram_size=2)
|
||||
generated_word = tokenizer.decode(output[0], skip_special_tokens=True).split(' ')[-1]
|
||||
preds.append(f'{generated_word.strip()}:0.99 :0.01')
|
||||
output = model.generate(torch.flip(src, dims=(1,)), max_length=len(src[0]) + 1, do_sample=True, top_k=0, temperature=0.8,
|
||||
num_return_sequences=1, no_repeat_ngram_size=2, output_scores=True)
|
||||
probs, idxs = torch.softmax(output.scores[0][-1], dim=0).topk(30)
|
||||
current_output = ''
|
||||
accumulated_probability = 0
|
||||
for prob, token_id in zip(probs, idxs):
|
||||
token = tokenizer.decode(token_id, skip_special_tokens=True).split(' ')[-1]
|
||||
if not token.isalnum() or token in blacklist:
|
||||
continue
|
||||
prob_value = prob.item()
|
||||
accumulated_probability += prob_value
|
||||
current_output += f'{token.strip()}:{prob_value} '
|
||||
current_output += f':{1 - accumulated_probability}'
|
||||
preds.append(current_output)
|
||||
return preds
|
||||
|
||||
|
||||
@ -69,12 +112,14 @@ def predict_words(dataset):
|
||||
|
||||
|
||||
dev_preds = predict_words(dev_input_contexts)
|
||||
with open('dev-0/out.tsv', 'w') as f:
|
||||
with open('challenging-america-word-gap-prediction/dev-0/out.tsv', 'w') as f:
|
||||
f.writelines(line + '\n' for line in dev_preds)
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
test_preds = predict_words(test_input_contexts)
|
||||
with open('test-A/out.tsv', 'w') as f:
|
||||
with open('challenging-america-word-gap-prediction/test-A/out.tsv', 'w') as f:
|
||||
f.writelines(line + '\n' for line in test_preds)
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user