#!/usr/bin/env python # coding: utf-8 # In[1]: import torch from torch.utils.data import Dataset, DataLoader from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoConfig # In[2]: import lzma def read_xz_file(fname): with lzma.open(fname, mode='rt', encoding='utf-8') as f: return [line.strip() for line in f.readlines()] def read_file(fname): with open(fname, mode='rt', encoding='utf-8') as f: return [line.strip() for line in f.readlines()] def get_contexts(input_text): all_fields = input_text.replace(r'\n', ' ').split('\t') return {'left': all_fields[6], 'right': all_fields[7]} bos = '<|endoftext|>' eos = '<|EOS|>' def compose_sentences(raw_input, labels): result = [] for input, label in zip(raw_input, labels): context = get_contexts(input) result.append(f'{bos} {context["left"]} {input} {eos}') result.append(f'{bos} {input} {context["right"]} {eos}') return result # In[6]: pad = '<|pad|>' special_tokens_dict = {'eos_token': eos, 'bos_token': bos, 'pad_token': pad} tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') num_add_tokens = tokenizer.add_special_tokens(special_tokens_dict) # In[4]: class AmericaDataset(Dataset): def __init__(self, tokenizer, data): self.tokenizer = tokenizer self.sentences = [] for entry in data: self.sentences.append( torch.tensor(self.tokenizer.encode(entry, padding=True)) ) def __len__(self): return len(self.sentences) def __getitem__(self, item): return self.sentences[item] # In[5]: train_input_raw = read_xz_file('challenging-america-word-gap-prediction/train/in.tsv.xz') train_labels = read_file('challenging-america-word-gap-prediction/train/expected.tsv') train_sentences = compose_sentences(train_input_raw, train_labels) train_dataset = AmericaDataset(tokenizer, train_sentences) # In[11]: config = AutoConfig.from_pretrained('distilgpt2', bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, output_hidden_states=False, return_dict_in_generate=True) model = GPT2LMHeadModel.from_pretrained('distilgpt2', config=config) model.resize_token_embeddings(len(tokenizer)) device = torch.device('cuda') model.to(device) # In[8]: def pack_tensor(new_tensor, packed_tensor, max_seq_len): if packed_tensor is None: return new_tensor, True, None if new_tensor.size()[1] + packed_tensor.size()[1] > max_seq_len: return packed_tensor, False, new_tensor else: packed_tensor = torch.cat([new_tensor, packed_tensor[:, 1:]], dim=1) return packed_tensor, True, None # In[9]: import os from transformers import AdamW, get_linear_schedule_with_warmup from tqdm import tqdm def train( model, dataset, batch_size=16, epochs=5, lr=2e-5, warmup_steps=200, output_dir=".", output_prefix="gpt2", save_model_on_epoch=False, ): device = torch.device("cuda") model = model.to(device) model.train() optimizer = AdamW(model.parameters(), lr=lr) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=-1 ) loss = 0 accumulating_batch_count = 0 input_tensor = None dataloader = DataLoader(dataset, batch_size=1, shuffle=True) for epoch in range(epochs): print(f"Training epoch {epoch}") print(loss) for idx, entry in tqdm(enumerate(dataloader)): (input_tensor, carry_on, remainder) = pack_tensor(entry, input_tensor, 1024) if carry_on and idx != len(dataset) - 1: continue input_tensor = input_tensor.to(device) outputs = model(input_tensor, labels=input_tensor) loss = outputs[0] loss.backward() if (accumulating_batch_count % batch_size) == 0: optimizer.step() scheduler.step() optimizer.zero_grad() model.zero_grad() accumulating_batch_count += 1 input_tensor = None if save_model_on_epoch: torch.save( model.state_dict(), os.path.join(output_dir, f"{output_prefix}-{epoch}.pt"), ) return model # In[12]: model = train(model, train_dataset) # In[3]: dev_input_raw = read_xz_file('challenging-america-word-gap-prediction/dev-0/in.tsv.xz') dev_input_contexts = [get_contexts(input_text) for input_text in dev_input_raw] test_input_raw = read_xz_file('challenging-america-word-gap-prediction/test-A/in.tsv.xz') test_input_contexts = [get_contexts(input_text) for input_text in test_input_raw] # In[15]: from tqdm import tqdm tokenizer.truncation_side = 'left' blacklist = ['ia', 'ix', 'io', 'ik'] # Te tokeny się prawie zawsze powtarzają, a nie są to żadne słowa w języku angielskim. def predict_words(dataset): preds = [] for entry in tqdm(dataset): text = f"{entry['left']}" src = tokenizer.encode(text, return_tensors="pt", truncation=True).to(device) output = model.generate(src, max_length=len(src[0]) + 1, do_sample=True, top_k=0, temperature=0.8, num_return_sequences=1, no_repeat_ngram_size=2, output_scores=True) probs, idxs = torch.softmax(output.scores[0][-1], dim=0).topk(30) current_output = '' accumulated_probability = 0 for prob, token_id in zip(probs, idxs): token = tokenizer.decode(token_id, skip_special_tokens=True).split(' ')[-1] if not token.isalnum() or token in blacklist: continue prob_value = prob.item() accumulated_probability += prob_value current_output += f'{token.strip()}:{prob_value} ' current_output += f':{1 - accumulated_probability}' preds.append(current_output) return preds # In[ ]: dev_preds = predict_words(dev_input_contexts) with open('challenging-america-word-gap-prediction/dev-0/out.tsv', 'w') as f: f.writelines(line + '\n' for line in dev_preds) # In[ ]: test_preds = predict_words(test_input_contexts) with open('challenging-america-word-gap-prediction/test-A/out.tsv', 'w') as f: f.writelines(line + '\n' for line in test_preds)