2022-05-11 18:19:02 +02:00
|
|
|
import json
|
|
|
|
import mlflow
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
logged_model = 'mlruns/1/d5b6f9c1784a4d2dbb8592cd4ad364d7/artifacts/model'
|
|
|
|
loaded_model = mlflow.pyfunc.load_model(logged_model)
|
|
|
|
|
|
|
|
|
|
|
|
with open(f'{logged_model}/input_example.json') as f:
|
|
|
|
data = json.load(f)
|
2022-05-11 18:34:08 +02:00
|
|
|
input_example = np.array([data['inputs'][0]], dtype=np.float64).reshape(-1, 2)
|
2022-05-11 18:19:02 +02:00
|
|
|
|
2022-05-11 18:34:08 +02:00
|
|
|
|
|
|
|
print(f'Prediction: {loaded_model.predict(input_example)}')
|