Move common methods and functions to model.py
All checks were successful
s444409-evaluation/pipeline/head This commit looks good
s444409-training/pipeline/head This commit looks good

This commit is contained in:
Marcin Kostrzewski 2022-05-06 21:51:49 +02:00
parent b7a8d43680
commit d0ab5ae997
3 changed files with 86 additions and 79 deletions

View File

@ -2,7 +2,7 @@ import matplotlib.pyplot as plt
import torch import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from train_model import MLP, PlantsDataset, test from model import MLP, PlantsDataset, test
def load_model(): def load_model():

83
model.py Normal file
View File

@ -0,0 +1,83 @@
import numpy as np
import pandas as pd
import torch
from torch import nn
from torch.utils.data import Dataset
device = "cuda" if torch.cuda.is_available() else "cpu"
def hour_to_int(text: str):
return float(text.replace(':', ''))
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(1, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
)
def forward(self, x):
x = x.view(x.size(0), -1)
return self.layers(x)
class PlantsDataset(Dataset):
def __init__(self, file_name):
df = pd.read_csv(file_name)
x = np.array([x[0].split(' ')[1] for x in df.iloc[:, 0:1].values])
y = df.iloc[:, 3].values
x_processed = np.array([hour_to_int(h) for h in x], dtype='float32')
self.x_train = torch.from_numpy(x_processed)
self.y_train = torch.from_numpy(y)
self.x_train.type(torch.LongTensor)
def __len__(self):
return len(self.y_train)
def __getitem__(self, idx):
return self.x_train[idx].float(), self.y_train[idx].float()
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
test_loss /= num_batches
print(f"Avg loss (using {loss_fn}): {test_loss:>8f} \n")
return test_loss

View File

@ -8,90 +8,14 @@ from torch import nn
from torch.utils.data import DataLoader, Dataset from torch.utils.data import DataLoader, Dataset
from sacred import Experiment from sacred import Experiment
from model import PlantsDataset, MLP, train, test
default_batch_size = 64 default_batch_size = 64
default_epochs = 5 default_epochs = 5
device = "cuda" if torch.cuda.is_available() else "cpu" device = "cuda" if torch.cuda.is_available() else "cpu"
def hour_to_int(text: str):
return float(text.replace(':', ''))
def int_to_hour(num: int):
return str(num)
class PlantsDataset(Dataset):
def __init__(self, file_name):
df = pd.read_csv(file_name)
x = np.array([x[0].split(' ')[1] for x in df.iloc[:, 0:1].values])
y = df.iloc[:, 3].values
x_processed = np.array([hour_to_int(h) for h in x], dtype='float32')
self.x_train = torch.from_numpy(x_processed)
self.y_train = torch.from_numpy(y)
self.x_train.type(torch.LongTensor)
def __len__(self):
return len(self.y_train)
def __getitem__(self, idx):
return self.x_train[idx].float(), self.y_train[idx].float()
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(1, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
)
def forward(self, x):
x = x.view(x.size(0), -1)
return self.layers(x)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
test_loss /= num_batches
print(f"Avg loss (using {loss_fn}): {test_loss:>8f} \n")
return test_loss
def main(batch_size, epochs): def main(batch_size, epochs):
print(f"Using {device} device") print(f"Using {device} device")