Add basic Sacred support
This commit is contained in:
parent
593b17cd2b
commit
f716e52cbf
@ -29,7 +29,7 @@ pipeline {
|
|||||||
stages {
|
stages {
|
||||||
stage('Train model') {
|
stage('Train model') {
|
||||||
steps {
|
steps {
|
||||||
sh "python train_model.py -e ${params.EPOCHS} -b ${params.BATCHSIZE}"
|
sh "python train_model.py with 'epochs=${params.EPOCHS}' 'batch_size=${params.BATCHSIZE}'"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('Archive model and evaluate it') {
|
stage('Archive model and evaluate it') {
|
||||||
|
@ -2,4 +2,5 @@ kaggle==1.5.12
|
|||||||
pandas==1.4.1
|
pandas==1.4.1
|
||||||
torch==1.11.0
|
torch==1.11.0
|
||||||
numpy~=1.22.3
|
numpy~=1.22.3
|
||||||
matplotlib==3.5.2
|
matplotlib==3.5.2
|
||||||
|
sacred==0.8.2
|
||||||
|
@ -5,6 +5,7 @@ import pandas as pd
|
|||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.utils.data import DataLoader, Dataset
|
from torch.utils.data import DataLoader, Dataset
|
||||||
|
from sacred import Experiment
|
||||||
|
|
||||||
default_batch_size = 64
|
default_batch_size = 64
|
||||||
default_epochs = 5
|
default_epochs = 5
|
||||||
@ -90,21 +91,9 @@ def test(dataloader, model, loss_fn):
|
|||||||
return test_loss
|
return test_loss
|
||||||
|
|
||||||
|
|
||||||
def setup_args():
|
def main(batch_size, epochs):
|
||||||
args_parser = argparse.ArgumentParser(prefix_chars='-')
|
|
||||||
args_parser.add_argument('-b', '--batchSize', type=int, default=default_batch_size)
|
|
||||||
args_parser.add_argument('-e', '--epochs', type=int, default=default_epochs)
|
|
||||||
|
|
||||||
return args_parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
print(f"Using {device} device")
|
print(f"Using {device} device")
|
||||||
|
|
||||||
args = setup_args()
|
|
||||||
|
|
||||||
batch_size = args.batchSize
|
|
||||||
|
|
||||||
plant_test = PlantsDataset('data/Plant_1_Generation_Data.csv.test')
|
plant_test = PlantsDataset('data/Plant_1_Generation_Data.csv.test')
|
||||||
plant_train = PlantsDataset('data/Plant_1_Generation_Data.csv.train')
|
plant_train = PlantsDataset('data/Plant_1_Generation_Data.csv.train')
|
||||||
|
|
||||||
@ -121,7 +110,6 @@ def main():
|
|||||||
|
|
||||||
loss_fn = nn.MSELoss()
|
loss_fn = nn.MSELoss()
|
||||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||||
epochs = args.epochs
|
|
||||||
for t in range(epochs):
|
for t in range(epochs):
|
||||||
print(f"Epoch {t + 1}\n-------------------------------")
|
print(f"Epoch {t + 1}\n-------------------------------")
|
||||||
train(train_dataloader, model, loss_fn, optimizer)
|
train(train_dataloader, model, loss_fn, optimizer)
|
||||||
@ -132,5 +120,15 @@ def main():
|
|||||||
print("Model saved in ./model_out file.")
|
print("Model saved in ./model_out file.")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
ex = Experiment('Predict power output for a given time')
|
||||||
main()
|
|
||||||
|
|
||||||
|
@ex.config
|
||||||
|
def experiment_config():
|
||||||
|
batch_size = 64
|
||||||
|
epochs = 5
|
||||||
|
|
||||||
|
|
||||||
|
@ex.automain
|
||||||
|
def run(batch_size, epochs):
|
||||||
|
main(batch_size, epochs)
|
||||||
|
Loading…
Reference in New Issue
Block a user