pipeline { agent { docker { image 's444409-create-dataset' } } environment { NOTIFICATION_ADDRESS = 'e19191c5.uam.onmicrosoft.com@emea.teams.ms' } stages { stage('Get previousl trend') { steps { copyArtifacts projectName: 's444409-evaluate', selector: lastSuccessful(), optional: true } } stage('Evaluate model and write results to file') { steps { sh "python eval_model.py" script { LOSS = sh(script: 'tail -1 evaluation_results.txt', returnStdout: true).trim() } } } } post { always { archiveArtifacts artifacts: 'evaluation_results', onlyIfSuccessful: true } success { emailext body: "Evaluation results: RMSE:${LOSS}", subject: "${env.JOB_NAME}", to: "${env.NOTIFICATION_ADDRESS}" } failure { emailext body: 'FAILURE', subject: "${env.JOB_NAME}", to: "${env.NOTIFICATION_ADDRESS}" } } }