import json import mlflow import numpy as np import torch from torch.autograd import Variable logged_model = 'mlruns/1/d5b6f9c1784a4d2dbb8592cd4ad364d7/artifacts/model' loaded_model = mlflow.pyfunc.load_model(logged_model) with open(f'{logged_model}/input_example.json') as f: data = json.load(f) input_example = np.array(data['inputs'][0]) input_example = Variable(torch.from_numpy(input_example)).float() loaded_model.predict(input_example)