import matplotlib.pyplot as plt import torch from torch.utils.data import DataLoader from train_model import MLP, PlantsDataset, test def load_model(): model = MLP() model.load_state_dict(torch.load('./model_out')) return model def load_dev_dataset(batch_size=64): plant_dev = PlantsDataset('data/Plant_1_Generation_Data.csv.dev') return DataLoader(plant_dev, batch_size=batch_size) def make_plot(values): build_nums = list(range(1, len(values) + 1)) plt.xlabel('Build number') plt.ylabel('MSE Loss') plt.plot(build_nums, values, label='Model MSE Loss over builds') plt.legend() plt.savefig('trend.png') def main(): model = load_model() dataloader = load_dev_dataset() loss_fn = torch.nn.MSELoss() loss = test(dataloader, model, loss_fn) with open('evaluation_results.txt', 'a+') as f: f.write(f'{str(loss)}\n') with open('evaluation_results.txt', 'r') as f: values = [float(line) for line in f.readlines() if line] make_plot(values) if __name__ == "__main__": main()