import numpy as np import pandas as pd import torch from torch import nn from torch.utils.data import Dataset device = "cuda" if torch.cuda.is_available() else "cpu" def hour_to_int(text: str): return float(text.replace(':', '')) class MLP(nn.Module): def __init__(self): super().__init__() self.layers = nn.Sequential( nn.Linear(1, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1), ) def forward(self, x): x = x.view(x.size(0), -1) return self.layers(x.float()) class PlantsDataset(Dataset): def __init__(self, file_name): df = pd.read_csv(file_name) x = np.array([x[0].split(' ')[1] for x in df.iloc[:, 0:1].values]) y = df.iloc[:, 3].values x_processed = np.array([hour_to_int(h) for h in x], dtype='float32') self.x_train = torch.from_numpy(x_processed) self.y_train = torch.from_numpy(y) self.x_train.type(torch.LongTensor) def __len__(self): return len(self.y_train) def __getitem__(self, idx): return self.x_train[idx].float(), self.y_train[idx].float() def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) model.train() for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) # Compute prediction error pred = model(X) loss = loss_fn(pred, y) # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() if batch % 100 == 0: loss, current = loss.item(), batch * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") def test(dataloader, model, loss_fn): num_batches = len(dataloader) model.eval() test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) test_loss += loss_fn(pred, y).item() test_loss /= num_batches print(f"Avg loss (using {loss_fn}): {test_loss:>8f} \n") return test_loss