DSZI_2020_Projekt/Restaurant/Marta/venv/Lib/site-packages/sklearn/isotonic.py

421 lines
14 KiB
Python
Raw Permalink Normal View History

2020-05-10 18:52:58 +02:00
# Authors: Fabian Pedregosa <fabian@fseoane.net>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD 3 clause
import numpy as np
from scipy import interpolate
from scipy.stats import spearmanr
from .base import BaseEstimator, TransformerMixin, RegressorMixin
from .utils import check_array, check_consistent_length
from ._isotonic import _inplace_contiguous_isotonic_regression, _make_unique
import warnings
import math
__all__ = ['check_increasing', 'isotonic_regression',
'IsotonicRegression']
def check_increasing(x, y):
"""Determine whether y is monotonically correlated with x.
y is found increasing or decreasing with respect to x based on a Spearman
correlation test.
Parameters
----------
x : array-like of shape (n_samples,)
Training data.
y : array-like of shape (n_samples,)
Training target.
Returns
-------
increasing_bool : boolean
Whether the relationship is increasing or decreasing.
Notes
-----
The Spearman correlation coefficient is estimated from the data, and the
sign of the resulting estimate is used as the result.
In the event that the 95% confidence interval based on Fisher transform
spans zero, a warning is raised.
References
----------
Fisher transformation. Wikipedia.
https://en.wikipedia.org/wiki/Fisher_transformation
"""
# Calculate Spearman rho estimate and set return accordingly.
rho, _ = spearmanr(x, y)
increasing_bool = rho >= 0
# Run Fisher transform to get the rho CI, but handle rho=+/-1
if rho not in [-1.0, 1.0] and len(x) > 3:
F = 0.5 * math.log((1. + rho) / (1. - rho))
F_se = 1 / math.sqrt(len(x) - 3)
# Use a 95% CI, i.e., +/-1.96 S.E.
# https://en.wikipedia.org/wiki/Fisher_transformation
rho_0 = math.tanh(F - 1.96 * F_se)
rho_1 = math.tanh(F + 1.96 * F_se)
# Warn if the CI spans zero.
if np.sign(rho_0) != np.sign(rho_1):
warnings.warn("Confidence interval of the Spearman "
"correlation coefficient spans zero. "
"Determination of ``increasing`` may be "
"suspect.")
return increasing_bool
def isotonic_regression(y, sample_weight=None, y_min=None, y_max=None,
increasing=True):
"""Solve the isotonic regression model::
min sum w[i] (y[i] - y_[i]) ** 2
subject to y_min = y_[1] <= y_[2] ... <= y_[n] = y_max
where:
- y[i] are inputs (real numbers)
- y_[i] are fitted
- w[i] are optional strictly positive weights (default to 1.0)
Read more in the :ref:`User Guide <isotonic>`.
Parameters
----------
y : iterable of floats
The data.
sample_weight : iterable of floats, optional, default: None
Weights on each point of the regression.
If None, weight is set to 1 (equal weights).
y_min : optional, default: None
If not None, set the lowest value of the fit to y_min.
y_max : optional, default: None
If not None, set the highest value of the fit to y_max.
increasing : boolean, optional, default: True
Whether to compute ``y_`` is increasing (if set to True) or decreasing
(if set to False)
Returns
-------
y_ : list of floats
Isotonic fit of y.
References
----------
"Active set algorithms for isotonic regression; A unifying framework"
by Michael J. Best and Nilotpal Chakravarti, section 3.
"""
order = np.s_[:] if increasing else np.s_[::-1]
y = check_array(y, ensure_2d=False, dtype=[np.float64, np.float32])
y = np.array(y[order], dtype=y.dtype)
if sample_weight is None:
sample_weight = np.ones(len(y), dtype=y.dtype)
else:
sample_weight = np.array(sample_weight[order], dtype=y.dtype)
_inplace_contiguous_isotonic_regression(y, sample_weight)
if y_min is not None or y_max is not None:
# Older versions of np.clip don't accept None as a bound, so use np.inf
if y_min is None:
y_min = -np.inf
if y_max is None:
y_max = np.inf
np.clip(y, y_min, y_max, y)
return y[order]
class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
"""Isotonic regression model.
The isotonic regression optimization problem is defined by::
min sum w_i (y[i] - y_[i]) ** 2
subject to y_[i] <= y_[j] whenever X[i] <= X[j]
and min(y_) = y_min, max(y_) = y_max
where:
- ``y[i]`` are inputs (real numbers)
- ``y_[i]`` are fitted
- ``X`` specifies the order.
If ``X`` is non-decreasing then ``y_`` is non-decreasing.
- ``w[i]`` are optional strictly positive weights (default to 1.0)
Read more in the :ref:`User Guide <isotonic>`.
.. versionadded:: 0.13
Parameters
----------
y_min : optional, default: None
If not None, set the lowest value of the fit to y_min.
y_max : optional, default: None
If not None, set the highest value of the fit to y_max.
increasing : boolean or string, optional, default: True
If boolean, whether or not to fit the isotonic regression with y
increasing or decreasing.
The string value "auto" determines whether y should
increase or decrease based on the Spearman correlation estimate's
sign.
out_of_bounds : string, optional, default: "nan"
The ``out_of_bounds`` parameter handles how x-values outside of the
training domain are handled. When set to "nan", predicted y-values
will be NaN. When set to "clip", predicted y-values will be
set to the value corresponding to the nearest train interval endpoint.
When set to "raise", allow ``interp1d`` to throw ValueError.
Attributes
----------
X_min_ : float
Minimum value of input array `X_` for left bound.
X_max_ : float
Maximum value of input array `X_` for right bound.
f_ : function
The stepwise interpolating function that covers the input domain ``X``.
Notes
-----
Ties are broken using the secondary method from Leeuw, 1977.
References
----------
Isotonic Median Regression: A Linear Programming Approach
Nilotpal Chakravarti
Mathematics of Operations Research
Vol. 14, No. 2 (May, 1989), pp. 303-308
Isotone Optimization in R : Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods
Leeuw, Hornik, Mair
Journal of Statistical Software 2009
Correctness of Kruskal's algorithms for monotone regression with ties
Leeuw, Psychometrica, 1977
Examples
--------
>>> from sklearn.datasets import make_regression
>>> from sklearn.isotonic import IsotonicRegression
>>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
>>> iso_reg = IsotonicRegression().fit(X.flatten(), y)
>>> iso_reg.predict([.1, .2])
array([1.8628..., 3.7256...])
"""
def __init__(self, y_min=None, y_max=None, increasing=True,
out_of_bounds='nan'):
self.y_min = y_min
self.y_max = y_max
self.increasing = increasing
self.out_of_bounds = out_of_bounds
def _check_fit_data(self, X, y, sample_weight=None):
if len(X.shape) != 1:
raise ValueError("X should be a 1d array")
def _build_f(self, X, y):
"""Build the f_ interp1d function."""
# Handle the out_of_bounds argument by setting bounds_error
if self.out_of_bounds not in ["raise", "nan", "clip"]:
raise ValueError("The argument ``out_of_bounds`` must be in "
"'nan', 'clip', 'raise'; got {0}"
.format(self.out_of_bounds))
bounds_error = self.out_of_bounds == "raise"
if len(y) == 1:
# single y, constant prediction
self.f_ = lambda x: y.repeat(x.shape)
else:
self.f_ = interpolate.interp1d(X, y, kind='linear',
bounds_error=bounds_error)
def _build_y(self, X, y, sample_weight, trim_duplicates=True):
"""Build the y_ IsotonicRegression."""
self._check_fit_data(X, y, sample_weight)
# Determine increasing if auto-determination requested
if self.increasing == 'auto':
self.increasing_ = check_increasing(X, y)
else:
self.increasing_ = self.increasing
# If sample_weights is passed, removed zero-weight values and clean
# order
if sample_weight is not None:
sample_weight = check_array(sample_weight, ensure_2d=False,
dtype=X.dtype)
mask = sample_weight > 0
X, y, sample_weight = X[mask], y[mask], sample_weight[mask]
else:
sample_weight = np.ones(len(y), dtype=X.dtype)
order = np.lexsort((y, X))
X, y, sample_weight = [array[order] for array in [X, y, sample_weight]]
unique_X, unique_y, unique_sample_weight = _make_unique(
X, y, sample_weight)
# Store _X_ and _y_ to maintain backward compat during the deprecation
# period of X_ and y_
self._X_ = X = unique_X
self._y_ = y = isotonic_regression(unique_y, unique_sample_weight,
self.y_min, self.y_max,
increasing=self.increasing_)
# Handle the left and right bounds on X
self.X_min_, self.X_max_ = np.min(X), np.max(X)
if trim_duplicates:
# Remove unnecessary points for faster prediction
keep_data = np.ones((len(y),), dtype=bool)
# Aside from the 1st and last point, remove points whose y values
# are equal to both the point before and the point after it.
keep_data[1:-1] = np.logical_or(
np.not_equal(y[1:-1], y[:-2]),
np.not_equal(y[1:-1], y[2:])
)
return X[keep_data], y[keep_data]
else:
# The ability to turn off trim_duplicates is only used to it make
# easier to unit test that removing duplicates in y does not have
# any impact the resulting interpolation function (besides
# prediction speed).
return X, y
def fit(self, X, y, sample_weight=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like of shape (n_samples,)
Training data.
y : array-like of shape (n_samples,)
Training target.
sample_weight : array-like of shape (n_samples,), default=None
Weights. If set to None, all weights will be set to 1 (equal
weights).
Returns
-------
self : object
Returns an instance of self.
Notes
-----
X is stored for future use, as :meth:`transform` needs X to interpolate
new input data.
"""
check_params = dict(accept_sparse=False, ensure_2d=False)
X = check_array(X, dtype=[np.float64, np.float32], **check_params)
y = check_array(y, dtype=X.dtype, **check_params)
check_consistent_length(X, y, sample_weight)
# Transform y by running the isotonic regression algorithm and
# transform X accordingly.
X, y = self._build_y(X, y, sample_weight)
# It is necessary to store the non-redundant part of the training set
# on the model to make it possible to support model persistence via
# the pickle module as the object built by scipy.interp1d is not
# picklable directly.
self._necessary_X_, self._necessary_y_ = X, y
# Build the interpolation function
self._build_f(X, y)
return self
def transform(self, T):
"""Transform new data by linear interpolation
Parameters
----------
T : array-like of shape (n_samples,)
Data to transform.
Returns
-------
T_ : array, shape=(n_samples,)
The transformed data
"""
if hasattr(self, '_necessary_X_'):
dtype = self._necessary_X_.dtype
else:
dtype = np.float64
T = check_array(T, dtype=dtype, ensure_2d=False)
if len(T.shape) != 1:
raise ValueError("Isotonic regression input should be a 1d array")
# Handle the out_of_bounds argument by clipping if needed
if self.out_of_bounds not in ["raise", "nan", "clip"]:
raise ValueError("The argument ``out_of_bounds`` must be in "
"'nan', 'clip', 'raise'; got {0}"
.format(self.out_of_bounds))
if self.out_of_bounds == "clip":
T = np.clip(T, self.X_min_, self.X_max_)
res = self.f_(T)
# on scipy 0.17, interp1d up-casts to float64, so we cast back
res = res.astype(T.dtype)
return res
def predict(self, T):
"""Predict new data by linear interpolation.
Parameters
----------
T : array-like of shape (n_samples,)
Data to transform.
Returns
-------
T_ : array, shape=(n_samples,)
Transformed data.
"""
return self.transform(T)
def __getstate__(self):
"""Pickle-protocol - return state of the estimator. """
state = super().__getstate__()
# remove interpolation method
state.pop('f_', None)
return state
def __setstate__(self, state):
"""Pickle-protocol - set state of the estimator.
We need to rebuild the interpolation function.
"""
super().__setstate__(state)
if hasattr(self, '_necessary_X_') and hasattr(self, '_necessary_y_'):
self._build_f(self._necessary_X_, self._necessary_y_)
def _more_tags(self):
return {'X_types': ['1darray']}