DSZI_2020_Projekt/Restaurant/Sara/image_classification.py

89 lines
2.5 KiB
Python
Raw Normal View History

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
img_width, img_height = 256, 256
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 140
nb_validation_samples = 40
epochs = 20
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (2, 2), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rotation_range=45,
width_shift_range=0.3,
height_shift_range=0.3,
rescale=1./255,
shear_range=0.25,
zoom_range=0.1,
horizontal_flip=True)
validation_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
model.save_weights('model_food_dirty.h5')
results = model.evaluate(train_generator)
print(results)
''' test na pojedynczym elemencie
test_image = load_img('data/train/dirty/dirty016.png', target_size=(img_width, img_height))
test_image = img_to_array(test_image)
test_image = test_image.reshape((1,) + test_image.shape)
# 0 -> dirty, 1 -> food
result = model.predict(test_image)
print(result)
'''