DSZI_2020_Projekt/Restaurant/Kinga/main4.py

78 lines
2.2 KiB
Python
Raw Normal View History

2020-05-18 14:17:23 +02:00
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
img_width, img_height = 256, 256
train_data_dir = 'data/train'
examine_data_dir = 'data/examine'
nb_train_samples = 290
nb_examine_samples = 80
epochs = 1
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
2020-05-17 16:54:07 +02:00
else:
2020-05-18 14:17:23 +02:00
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (2, 2), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(7))
model.add(Activation('sigmoid'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rotation_range=45,
width_shift_range=0.3,
height_shift_range=0.3,
rescale=1. / 255,
shear_range=0.25,
zoom_range=0.1,
horizontal_flip=True)
examine_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
examine_generator = examine_datagen.flow_from_directory(
examine_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=examine_generator,
validation_steps=nb_examine_samples // batch_size)
model.save_weights('model_paymenttttt.h5')
results = model.evaluate(train_generator)
print(results)
print((train_generator.class_indices))