commit_natalia
This commit is contained in:
parent
1227058e70
commit
25c68df0f4
@ -5,7 +5,7 @@
|
||||
<excludeFolder url="file://$MODULE_DIR$/Restaurant/Marta/venv" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.7" jdkType="Python SDK" />
|
||||
<orderEntry type="jdk" jdkName="Python 3.7 (projekt_sztuczna)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="TestRunnerService">
|
||||
|
@ -1,4 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (projekt_sztuczna)" project-jdk-type="Python SDK" />
|
||||
</project>
|
100
Restaurant/Natalia/Nowy.csv
Normal file
100
Restaurant/Natalia/Nowy.csv
Normal file
@ -0,0 +1,100 @@
|
||||
20,0,2,4,3,2
|
||||
57,0,8,2,1,2
|
||||
50,1,3,4,1,1
|
||||
51,1,6,1,1,1
|
||||
82,1,9,1,2,2
|
||||
73,1,5,4,3,2
|
||||
65,0,7,3,2,1
|
||||
16,1,9,2,3,1
|
||||
23,0,1,4,3,1
|
||||
74,0,10,3,1,1
|
||||
85,1,5,4,1,2
|
||||
35,0,2,1,2,1
|
||||
79,1,9,4,1,2
|
||||
56,0,7,2,1,2
|
||||
51,0,6,4,3,2
|
||||
13,1,8,1,3,1
|
||||
30,0,8,2,2,2
|
||||
50,0,5,5,1,2
|
||||
39,1,9,3,3,1
|
||||
20,0,7,5,3,1
|
||||
63,1,8,4,1,1
|
||||
74,1,2,1,3,1
|
||||
46,1,7,3,1,2
|
||||
52,0,5,3,3,1
|
||||
39,0,9,1,3,1
|
||||
14,1,4,1,3,2
|
||||
81,1,2,1,3,1
|
||||
79,0,10,4,1,2
|
||||
69,0,1,5,1,2
|
||||
87,1,3,4,3,2
|
||||
72,1,9,1,3,1
|
||||
85,0,5,4,1,2
|
||||
59,1,10,5,3,1
|
||||
32,1,8,1,3,1
|
||||
28,0,3,1,1,2
|
||||
77,0,10,3,1,1
|
||||
82,1,4,5,3,2
|
||||
30,0,9,1,3,2
|
||||
83,1,9,2,3,2
|
||||
88,1,2,3,2,1
|
||||
72,1,8,3,2,1
|
||||
87,1,9,2,2,2
|
||||
13,0,8,5,2,1
|
||||
47,0,6,3,1,2
|
||||
51,1,1,4,3,1
|
||||
27,0,4,5,2,2
|
||||
50,1,7,5,1,2
|
||||
16,1,2,4,2,2
|
||||
29,0,8,4,3,2
|
||||
80,1,2,3,2,1
|
||||
16,0,10,2,1,1
|
||||
76,0,4,4,3,2
|
||||
44,1,6,1,1,2
|
||||
63,0,5,2,2,2
|
||||
12,1,5,4,3,2
|
||||
73,1,1,5,1,2
|
||||
39,1,7,3,3,1
|
||||
10,0,8,3,1,2
|
||||
32,0,7,4,3,1
|
||||
32,0,8,1,2,1
|
||||
74,1,2,4,1,2
|
||||
77,1,9,1,3,1
|
||||
13,1,2,1,1,1
|
||||
61,0,10,1,1,2
|
||||
48,1,2,1,1,1
|
||||
11,0,4,5,3,1
|
||||
80,0,10,3,3,1
|
||||
33,0,9,5,3,2
|
||||
53,1,5,2,3,2
|
||||
56,0,10,2,2,2
|
||||
25,1,4,4,1,2
|
||||
27,0,8,3,3,2
|
||||
83,0,1,1,1,2
|
||||
49,0,4,3,2,2
|
||||
76,0,10,3,1,1
|
||||
40,0,1,5,2,2
|
||||
73,1,3,4,2,1
|
||||
19,1,2,4,2,2
|
||||
77,1,7,2,3,1
|
||||
52,0,5,4,3,2
|
||||
29,0,10,2,3,1
|
||||
28,1,5,1,3,2
|
||||
63,0,1,5,3,2
|
||||
84,1,4,2,1,2
|
||||
31,0,9,1,3,1
|
||||
46,1,3,5,1,1
|
||||
84,0,6,5,3,1
|
||||
30,0,7,1,2,2
|
||||
29,1,7,1,1,1
|
||||
46,1,5,3,3,2
|
||||
17,1,8,1,1,1
|
||||
37,0,10,4,2,1
|
||||
43,0,6,1,3,1
|
||||
57,1,6,1,2,2
|
||||
58,1,4,1,3,2
|
||||
59,0,1,4,3,1
|
||||
26,0,7,2,3,2
|
||||
43,0,2,1,3,1
|
||||
66,0,8,2,1,1
|
||||
85,1,2,1,2,2
|
|
54
Restaurant/Natalia/Tree_natalia
Normal file
54
Restaurant/Natalia/Tree_natalia
Normal file
@ -0,0 +1,54 @@
|
||||
# Load libraries
|
||||
import pandas as pd
|
||||
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier
|
||||
from sklearn.model_selection import train_test_split # Import train_test_split function
|
||||
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
|
||||
from sklearn.tree import export_graphviz
|
||||
from sklearn.externals.six import StringIO
|
||||
from IPython.display import Image
|
||||
import pydotplus
|
||||
|
||||
col_names = ['age', 'sex', 'fat', 'spicy', 'hungry', 'budget']
|
||||
# load dataset
|
||||
pima = pd.read_csv("nazwa.csv", header=None, names=col_names)
|
||||
|
||||
#split dataset in features and target variable
|
||||
feature_cols = ['age', 'sex', 'fat', 'spicy']
|
||||
X = pima[feature_cols] # Features
|
||||
y = pima.label # Target variable
|
||||
|
||||
# Split dataset into training set and test set
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test
|
||||
|
||||
# Create Decision Tree classifer object
|
||||
clf = DecisionTreeClassifier()
|
||||
|
||||
# Train Decision Tree Classifer
|
||||
clf = clf.fit(X_train,y_train)
|
||||
|
||||
#Predict the response for test dataset
|
||||
y_pred = clf.predict(X_test)
|
||||
|
||||
# Model Accuracy, how often is the classifier correct?
|
||||
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
|
||||
|
||||
dot_data = StringIO()
|
||||
export_graphviz(clf, out_file=dot_data,
|
||||
filled=True, rounded=True,
|
||||
special_characters=True,feature_names = feature_cols,class_names=['0','1'])
|
||||
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
|
||||
graph.write_png('food_tree.png')
|
||||
Image(graph.create_png())
|
||||
|
||||
|
||||
# Create Decision Tree classifer object
|
||||
clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)
|
||||
|
||||
# Train Decision Tree Classifer
|
||||
clf = clf.fit(X_train,y_train)
|
||||
|
||||
#Predict the response for test dataset
|
||||
y_pred = clf.predict(X_test)
|
||||
|
||||
# Model Accuracy, how often is the classifier correct?
|
||||
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
|
0
Restaurant/Natalia/__init__.py
Normal file
0
Restaurant/Natalia/__init__.py
Normal file
Loading…
Reference in New Issue
Block a user