from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras import backend as K img_width, img_height = 256, 256 train_data_dir = 'data/train' validation_data_dir = 'data/validation' nb_train_samples = 140 nb_validation_samples = 40 epochs = 20 batch_size = 16 if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) model = Sequential() model.add(Conv2D(32, (2, 2), input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) train_datagen = ImageDataGenerator( rotation_range=45, width_shift_range=0.3, height_shift_range=0.3, rescale=1./255, shear_range=0.25, zoom_range=0.1, horizontal_flip=True) validation_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') validation_generator = validation_datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size) model.save_weights('model_food_dirty.h5') results = model.evaluate(train_generator) print(results) ''' test na pojedynczym elemencie test_image = load_img('data/train/dirty/dirty016.png', target_size=(img_width, img_height)) test_image = img_to_array(test_image) test_image = test_image.reshape((1,) + test_image.shape) # 0 -> dirty, 1 -> food result = model.predict(test_image) print(result) '''