from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras import backend as K img_width, img_height = 256, 256 train_data_dir = 'data/train' examine_data_dir = 'data/examine' nb_train_samples = 290 nb_examine_samples = 80 epochs = 50 batch_size = 16 if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) model = Sequential() model.add(Conv2D(32, (2, 2), input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(7)) model.add(Activation('sigmoid')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) train_datagen = ImageDataGenerator( rotation_range=45, width_shift_range=0.3, height_shift_range=0.3, rescale=1. / 255, shear_range=0.25, zoom_range=0.1, horizontal_flip=True) examine_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') examine_generator = examine_datagen.flow_from_directory( examine_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=examine_generator, validation_steps=nb_examine_samples // batch_size) model.save_weights('model_payment.h5') results = model.evaluate(train_generator) print(results)