aitech-eks-pub/cw/10_CRF.ipynb

448 lines
10 KiB
Plaintext
Raw Normal View History

2021-05-26 14:36:47 +02:00
{
"cells": [
2021-09-27 12:34:44 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 10. <i>CRF</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
2021-05-26 14:36:47 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście softmax z embeddingami na przykładzie NER"
]
},
{
"cell_type": "markdown",
"metadata": {
"scrolled": true
},
"source": [
"https://pytorch-crf.readthedocs.io/en/stable/"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://www.aclweb.org/anthology/W03-0419.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import gensim\n",
"import torch\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from datasets import load_dataset\n",
"from torchtext.vocab import Vocab\n",
"from collections import Counter\n",
"\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
"\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"from tqdm.notebook import tqdm\n",
"\n",
"import torch\n",
"from torchcrf import CRF"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"dataset = load_dataset(\"conll2003\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def build_vocab(dataset):\n",
" counter = Counter()\n",
" for document in dataset:\n",
" counter.update(document)\n",
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab = build_vocab(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(vocab.itos)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab['on']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def data_process(dt):\n",
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def labels_process(dt):\n",
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids = data_process(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_tokens_ids = data_process(dataset['test']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"validation_tokens_ids = data_process(dataset['validation']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"train_labels = labels_process(dataset['train']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"validation_labels = labels_process(dataset['validation']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_labels = labels_process(dataset['test']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_scores(y_true, y_pred):\n",
" acc_score = 0\n",
" tp = 0\n",
" fp = 0\n",
" selected_items = 0\n",
" relevant_items = 0 \n",
"\n",
" for p,t in zip(y_pred, y_true):\n",
" if p == t:\n",
" acc_score +=1\n",
"\n",
" if p > 0 and p == t:\n",
" tp +=1\n",
"\n",
" if p > 0:\n",
" selected_items += 1\n",
"\n",
" if t > 0 :\n",
" relevant_items +=1\n",
"\n",
" \n",
" \n",
" if selected_items == 0:\n",
" precision = 1.0\n",
" else:\n",
" precision = tp / selected_items\n",
" \n",
" \n",
" if relevant_items == 0:\n",
" recall = 1.0\n",
" else:\n",
" recall = tp / relevant_items\n",
" \n",
" \n",
" if precision + recall == 0.0 :\n",
" f1 = 0.0\n",
" else:\n",
" f1 = 2* precision * recall / (precision + recall)\n",
"\n",
" return precision, recall, f1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_tags = max([max(x) for x in dataset['train']['ner_tags'] ]) + 1 "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class FF(torch.nn.Module):\n",
"\n",
" def __init__(self,):\n",
" super(FF, self).__init__()\n",
" self.emb = torch.nn.Embedding(23627,200)\n",
" self.fc1 = torch.nn.Linear(200,num_tags)\n",
" \n",
"\n",
" def forward(self, x):\n",
" x = self.emb(x)\n",
" x = self.fc1(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ff = FF()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"crf = CRF(num_tags)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params = list(ff.parameters()) + list(crf.parameters())\n",
"\n",
"optimizer = torch.optim.Adam(params)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def eval_model(dataset_tokens, dataset_labels):\n",
" Y_true = []\n",
" Y_pred = []\n",
" ff.eval()\n",
" crf.eval()\n",
" for i in tqdm(range(len(dataset_labels))):\n",
" batch_tokens = dataset_tokens[i]\n",
" tags = list(dataset_labels[i].numpy())\n",
" emissions = ff(batch_tokens).unsqueeze(1)\n",
" Y_pred += crf.decode(emissions)[0]\n",
" Y_true += tags\n",
"\n",
" return get_scores(Y_true, Y_pred)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"NUM_EPOCHS = 4"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"for i in range(NUM_EPOCHS):\n",
" ff.train()\n",
" crf.train()\n",
" for i in tqdm(range(len(train_labels))):\n",
" batch_tokens = train_tokens_ids[i]\n",
" tags = train_labels[i].unsqueeze(1)\n",
" emissions = ff(batch_tokens).unsqueeze(1)\n",
"\n",
" optimizer.zero_grad()\n",
" loss = -crf(emissions,tags)\n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" ff.eval()\n",
" crf.eval()\n",
" print(eval_model(validation_tokens_ids, validation_labels))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"eval_model(validation_tokens_ids, validation_labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"eval_model(test_tokens_ids, test_labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(train_tokens_ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie domowe\n",
"\n",
"- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003\n",
"- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu + CRF (można bazować na tym jupyterze lub nie).\n",
"- sieć feedforward powinna obejmować aktualne słowo, poprzednie i następne + dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)\n",
"- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 15.06, 60 punktów, za najlepszy wynik- 100 punktów\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
2021-09-27 12:34:44 +02:00
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
2021-05-26 14:36:47 +02:00
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
2021-09-27 12:34:44 +02:00
"lang": "pl",
2021-05-26 14:36:47 +02:00
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2021-09-27 12:34:44 +02:00
"version": "3.8.3"
},
"subtitle": "10.CRF[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
2021-05-26 14:36:47 +02:00
},
"nbformat": 4,
"nbformat_minor": 4
}