Add metadata

This commit is contained in:
Filip Gralinski 2021-09-27 07:57:37 +02:00
parent 9a61b2c06c
commit fedffd5456
12 changed files with 7746 additions and 7536 deletions

View File

@ -3,7 +3,7 @@
#procedura napisywania plików ipynb (generowanie nagłówka i metadanych) #procedura napisywania plików ipynb (generowanie nagłówka i metadanych)
import json import json
import sys import sys
import re
def modjup(filen,numer,tytul,typ,author,email,lang,title,year): def modjup(filen,numer,tytul,typ,author,email,lang,title,year):
zerocell=['![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n', zerocell=['![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n',
@ -35,7 +35,7 @@ def modjup(filen,numer,tytul,typ,author,email,lang,title,year):
#zmodyfikuj te dane #zmodyfikuj te dane
filen=sys.argv[1] filen=sys.argv[1]
numer="2" numer=re.match(r'^(?:\D+/)?0*(\d+)', filen).group(1)
tytul=sys.argv[2] tytul=sys.argv[2]
typ="wykład" typ="wykład"

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,19 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 6. <i>Wyzwania uczenia maszynowego</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -367,11 +381,14 @@
} }
], ],
"metadata": { "metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3 (ipykernel)",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
"lang": "pl",
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
@ -382,8 +399,11 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.9.2" "version": "3.9.6"
} },
"subtitle": "6.Wyzwania uczenia maszynowego[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 4 "nbformat_minor": 4

View File

@ -1,5 +1,20 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"id": "45264aad",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 7. <i>Naiwny klasyfikator bayesowski w ekstrakcji informacji</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "moderate-array", "id": "moderate-array",
@ -347,11 +362,14 @@
} }
], ],
"metadata": { "metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3 (ipykernel)",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
"lang": "pl",
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
@ -362,8 +380,11 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.9.2" "version": "3.9.6"
} },
"subtitle": "7.Naiwny klasyfikator bayesowski w ekstrakcji informacji[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 5 "nbformat_minor": 5

View File

@ -1,5 +1,20 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"id": "35c19016",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 8. <i>Regresja liniowa</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "cathedral-newark", "id": "cathedral-newark",
@ -141,6 +156,8 @@
"\n", "\n",
"![Morskie Oko - Krzysztof Dudzik](08_files/morskieoko.jpg)\n", "![Morskie Oko - Krzysztof Dudzik](08_files/morskieoko.jpg)\n",
"\n", "\n",
"(Źródło: https://pl.wikipedia.org/wiki/Morskie_Oko#/media/Plik:Morskie_Oko_ze_szlaku_przez_%C5%9Awist%C3%B3wk%C4%99.jpg, licencja CC BY 3.0)\n",
"\n",
"Schodź wzdłuż lokalnego spadku funkcji błędu.\n", "Schodź wzdłuż lokalnego spadku funkcji błędu.\n",
"\n", "\n",
"Tak więc w praktyce zamiast podstawiać do wzoru lepiej się uczyć iteracyjnie -\n", "Tak więc w praktyce zamiast podstawiać do wzoru lepiej się uczyć iteracyjnie -\n",
@ -279,11 +296,14 @@
} }
], ],
"metadata": { "metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3 (ipykernel)",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
"lang": "pl",
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
@ -294,8 +314,11 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.9.2" "version": "3.9.6"
} },
"subtitle": "8.Regresja liniowa[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 5 "nbformat_minor": 5

View File

@ -1,5 +1,19 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 9. <i>Przegląd składowych sieci neuronowych</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -1463,13 +1477,7 @@
"1.938151240348816 1.998972773551941 950 4 tensor([[0.1241, 0.1263, 0.1215, 0.1199, 0.1355, 0.1184, 0.1261, 0.1283]],\n", "1.938151240348816 1.998972773551941 950 4 tensor([[0.1241, 0.1263, 0.1215, 0.1199, 0.1355, 0.1184, 0.1261, 0.1283]],\n",
" grad_fn=<ExpBackward>) Andrzej Kostyra stworzył \"idealnego polskiego boksera\". Jest dużo cech Tomasza Adamka Andrzej Kostyra, ekspert bokserski, stworzył model \"idealnego polskiego pięściarza\". Wymienił najlepsze cechy poszczególnych bokserów. Najwięcej jest Tomasza Adamka.\n", " grad_fn=<ExpBackward>) Andrzej Kostyra stworzył \"idealnego polskiego boksera\". Jest dużo cech Tomasza Adamka Andrzej Kostyra, ekspert bokserski, stworzył model \"idealnego polskiego pięściarza\". Wymienił najlepsze cechy poszczególnych bokserów. Najwięcej jest Tomasza Adamka.\n",
"1.928910732269287 1.9361062049865723 1000 1 tensor([[0.1222, 0.1443, 0.1320, 0.1216, 0.1117, 0.1137, 0.1200, 0.1346]],\n", "1.928910732269287 1.9361062049865723 1000 1 tensor([[0.1222, 0.1443, 0.1320, 0.1216, 0.1117, 0.1137, 0.1200, 0.1346]],\n",
" grad_fn=<ExpBackward>) Rajd Niemiec: Andreas Mikkelsen i Jari-Matti Latvala najszybsi na shakedown W czwartek kierowcy mieli do pokonania odcinek testowy przed Rajdem Niemiec. Na mecie okazało się, że Andreas Mikkelsen i Jari-Matti Latvala uzyskali identyczny czas.\n" " grad_fn=<ExpBackward>) Rajd Niemiec: Andreas Mikkelsen i Jari-Matti Latvala najszybsi na shakedown W czwartek kierowcy mieli do pokonania odcinek testowy przed Rajdem Niemiec. Na mecie okazało się, że Andreas Mikkelsen i Jari-Matti Latvala uzyskali identyczny czas.\n",
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.9247257709503174 1.9077305793762207 1050 4 tensor([[0.1264, 0.1246, 0.1286, 0.1161, 0.1484, 0.1108, 0.1174, 0.1276]],\n", "1.9247257709503174 1.9077305793762207 1050 4 tensor([[0.1264, 0.1246, 0.1286, 0.1161, 0.1484, 0.1108, 0.1174, 0.1276]],\n",
" grad_fn=<ExpBackward>) Była rywalka Joanny Jędrzejczyk na dopingu. Czeka ją zawieszenie Była pretendenta to tytułu mistrzyni UFC w wadze słomkowej, Jessica Penne (MMA 12-5) została zawieszona przez Amerykańską Agencję Antydopingową za stosowanie niedozwolonego środka. Amerykankę czeka 1,5-roczne zawieszenie.\n", " grad_fn=<ExpBackward>) Była rywalka Joanny Jędrzejczyk na dopingu. Czeka ją zawieszenie Była pretendenta to tytułu mistrzyni UFC w wadze słomkowej, Jessica Penne (MMA 12-5) została zawieszona przez Amerykańską Agencję Antydopingową za stosowanie niedozwolonego środka. Amerykankę czeka 1,5-roczne zawieszenie.\n",
"1.9094451665878296 1.8653218746185303 1100 2 tensor([[0.1117, 0.1150, 0.1548, 0.1148, 0.1137, 0.1239, 0.1094, 0.1566]],\n", "1.9094451665878296 1.8653218746185303 1100 2 tensor([[0.1117, 0.1150, 0.1548, 0.1148, 0.1137, 0.1239, 0.1094, 0.1566]],\n",
@ -1511,13 +1519,7 @@
"1.7356246709823608 1.938697099685669 2000 6 tensor([[0.1114, 0.0960, 0.1303, 0.1193, 0.1003, 0.1257, 0.1439, 0.1731]],\n", "1.7356246709823608 1.938697099685669 2000 6 tensor([[0.1114, 0.0960, 0.1303, 0.1193, 0.1003, 0.1257, 0.1439, 0.1731]],\n",
" grad_fn=<ExpBackward>) KMŚ 2017: ZAKSA - Sarmayeh Bank Teheran na żywo. Gdzie oglądać transmisję TV i online? We wtorek, ZAKSA Kędzierzyn-Koźle zmierzy się z Sarmayeh Bank Teheran w ramach Klubowych Mistrzostw Świata w siatkówce. Transmisja TV na antenie Polsat Sport. Stream online w Ipla TV. Relacja LIVE w WP SportoweFakty za darmo.\n", " grad_fn=<ExpBackward>) KMŚ 2017: ZAKSA - Sarmayeh Bank Teheran na żywo. Gdzie oglądać transmisję TV i online? We wtorek, ZAKSA Kędzierzyn-Koźle zmierzy się z Sarmayeh Bank Teheran w ramach Klubowych Mistrzostw Świata w siatkówce. Transmisja TV na antenie Polsat Sport. Stream online w Ipla TV. Relacja LIVE w WP SportoweFakty za darmo.\n",
"1.7901594638824463 1.9917528629302979 2050 1 tensor([[0.1212, 0.1365, 0.1351, 0.1287, 0.1104, 0.1252, 0.1179, 0.1250]],\n", "1.7901594638824463 1.9917528629302979 2050 1 tensor([[0.1212, 0.1365, 0.1351, 0.1287, 0.1104, 0.1252, 0.1179, 0.1250]],\n",
" grad_fn=<ExpBackward>) Wakacyjny freestyle Przygońskiego i Pawlusiaka na pustyni Pędzące po wydmach dakarowe MINI, specjalnie dostosowany snowboard, lina i dwóch utalentowanych sportowców - tak w skrócie można opisać projekt \"Przygoński & Pawlusiak Dune Freestyle\".\n" " grad_fn=<ExpBackward>) Wakacyjny freestyle Przygońskiego i Pawlusiaka na pustyni Pędzące po wydmach dakarowe MINI, specjalnie dostosowany snowboard, lina i dwóch utalentowanych sportowców - tak w skrócie można opisać projekt \"Przygoński & Pawlusiak Dune Freestyle\".\n",
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.7326788902282715 1.8687950372695923 2100 5 tensor([[0.1091, 0.1428, 0.1050, 0.1267, 0.1092, 0.1543, 0.1100, 0.1429]],\n", "1.7326788902282715 1.8687950372695923 2100 5 tensor([[0.1091, 0.1428, 0.1050, 0.1267, 0.1092, 0.1543, 0.1100, 0.1429]],\n",
" grad_fn=<ExpBackward>) Martynas Sajus: Sobin jest bardziej doświadczonym graczem, ale w przyszłości będę od niego lepszy Pojedynek Josipa Sobina z Martynasem Sajusem może być jednym ze smaczków piątkowego spotkania Anwilu z Polpharmą. Który ze środkowych da więcej swojej ekipie? - On jest bardziej doświadczony, ale w przyszłości to ja będę lepszy - śmieje się Sajus.\n", " grad_fn=<ExpBackward>) Martynas Sajus: Sobin jest bardziej doświadczonym graczem, ale w przyszłości będę od niego lepszy Pojedynek Josipa Sobina z Martynasem Sajusem może być jednym ze smaczków piątkowego spotkania Anwilu z Polpharmą. Który ze środkowych da więcej swojej ekipie? - On jest bardziej doświadczony, ale w przyszłości to ja będę lepszy - śmieje się Sajus.\n",
"1.7521668672561646 1.5104379653930664 2150 2 tensor([[0.0978, 0.1259, 0.2208, 0.1105, 0.1043, 0.1174, 0.1048, 0.1186]],\n", "1.7521668672561646 1.5104379653930664 2150 2 tensor([[0.0978, 0.1259, 0.2208, 0.1105, 0.1043, 0.1174, 0.1048, 0.1186]],\n",
@ -1557,13 +1559,7 @@
"1.6379656791687012 1.4863052368164062 3000 3 tensor([[0.0881, 0.0816, 0.1089, 0.2262, 0.0698, 0.1202, 0.1658, 0.1394]],\n", "1.6379656791687012 1.4863052368164062 3000 3 tensor([[0.0881, 0.0816, 0.1089, 0.2262, 0.0698, 0.1202, 0.1658, 0.1394]],\n",
" grad_fn=<ExpBackward>) Liga Mistrzów: Paris Saint-Germain HB kolejnym uczestnikiem Final Four Paris Saint-Germain HB zremisował z MOL-Pickiem Szeged 30:30 w rewanżowym meczu ćwierćfinałowym Ligi Mistrzów 2016/2017, tym samym zdobywając awans do turnieju finałowego w Kolonii.\n", " grad_fn=<ExpBackward>) Liga Mistrzów: Paris Saint-Germain HB kolejnym uczestnikiem Final Four Paris Saint-Germain HB zremisował z MOL-Pickiem Szeged 30:30 w rewanżowym meczu ćwierćfinałowym Ligi Mistrzów 2016/2017, tym samym zdobywając awans do turnieju finałowego w Kolonii.\n",
"1.620102047920227 1.955077886581421 3050 5 tensor([[0.0998, 0.1599, 0.1024, 0.1031, 0.1239, 0.1416, 0.1172, 0.1520]],\n", "1.620102047920227 1.955077886581421 3050 5 tensor([[0.0998, 0.1599, 0.1024, 0.1031, 0.1239, 0.1416, 0.1172, 0.1520]],\n",
" grad_fn=<ExpBackward>) Chewbacca ma nową twarz. Jak koszykarz z Finlandii trafił do \"Gwiezdnych Wojen\" Zbliżający się weekend będzie tym, w którym miliony fanów \"Gwiezdnych Wojen\" zaczną szturmować kina, by obejrzeć 8. część sagi. Wielu z nich nie wie, że za maską Chewbakki od niedawna skrywa się nowa twarz - fińskiego koszykarza, Joonasa Suotamo.\n" " grad_fn=<ExpBackward>) Chewbacca ma nową twarz. Jak koszykarz z Finlandii trafił do \"Gwiezdnych Wojen\" Zbliżający się weekend będzie tym, w którym miliony fanów \"Gwiezdnych Wojen\" zaczną szturmować kina, by obejrzeć 8. część sagi. Wielu z nich nie wie, że za maską Chewbakki od niedawna skrywa się nowa twarz - fińskiego koszykarza, Joonasa Suotamo.\n",
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.6508986949920654 1.7872048616409302 3100 7 tensor([[0.1113, 0.1329, 0.0890, 0.1126, 0.1327, 0.1295, 0.1246, 0.1674]],\n", "1.6508986949920654 1.7872048616409302 3100 7 tensor([[0.1113, 0.1329, 0.0890, 0.1126, 0.1327, 0.1295, 0.1246, 0.1674]],\n",
" grad_fn=<ExpBackward>) Ireneusz Mamrot liczy na przełamanie. \"Jest sportowa złość, która musi się przełożyć na naszą korzyść\" - Nie ma zdenerwowania, ale jest duża sportowa złość. To musi się przełożyć na naszą korzyść - mówi przed sobotnim pojedynkiem z Koroną Kielce trener Jagiellonii Białystok, Ireneusz Mamrot. - Nie można wiecznie mieć gorszego okresu - dodaje.\n", " grad_fn=<ExpBackward>) Ireneusz Mamrot liczy na przełamanie. \"Jest sportowa złość, która musi się przełożyć na naszą korzyść\" - Nie ma zdenerwowania, ale jest duża sportowa złość. To musi się przełożyć na naszą korzyść - mówi przed sobotnim pojedynkiem z Koroną Kielce trener Jagiellonii Białystok, Ireneusz Mamrot. - Nie można wiecznie mieć gorszego okresu - dodaje.\n",
"1.5091105699539185 1.5536433458328247 3150 2 tensor([[0.1030, 0.1194, 0.2115, 0.1183, 0.1021, 0.1098, 0.1085, 0.1274]],\n", "1.5091105699539185 1.5536433458328247 3150 2 tensor([[0.1030, 0.1194, 0.2115, 0.1183, 0.1021, 0.1098, 0.1085, 0.1274]],\n",
@ -1603,13 +1599,7 @@
"1.4597876071929932 1.3940199613571167 4000 7 tensor([[0.0933, 0.1557, 0.0803, 0.0930, 0.1256, 0.1070, 0.0970, 0.2481]],\n", "1.4597876071929932 1.3940199613571167 4000 7 tensor([[0.0933, 0.1557, 0.0803, 0.0930, 0.1256, 0.1070, 0.0970, 0.2481]],\n",
" grad_fn=<ExpBackward>) Grzegorz Krychowiak na zakręcie. Mundial to ostatnia szansa Grzegorz Krychowiak znowu jest na zakręcie i musi szukać nowego klubu. Paris-Saint Germain chce się pozbyć Polaka na dobre. Mundial w Rosji to dla mistrzów Francji ostatnia szansa, żeby sprzedać go za godne pieniądze.\n", " grad_fn=<ExpBackward>) Grzegorz Krychowiak na zakręcie. Mundial to ostatnia szansa Grzegorz Krychowiak znowu jest na zakręcie i musi szukać nowego klubu. Paris-Saint Germain chce się pozbyć Polaka na dobre. Mundial w Rosji to dla mistrzów Francji ostatnia szansa, żeby sprzedać go za godne pieniądze.\n",
"1.4579588174819946 1.5661852359771729 4050 6 tensor([[0.0991, 0.1113, 0.0903, 0.1400, 0.0902, 0.1380, 0.2088, 0.1223]],\n", "1.4579588174819946 1.5661852359771729 4050 6 tensor([[0.0991, 0.1113, 0.0903, 0.1400, 0.0902, 0.1380, 0.2088, 0.1223]],\n",
" grad_fn=<ExpBackward>) ZAKSA Kędzierzyn-Koźle trenuje już niemal w komplecie Na początku tygodnia do kędzierzyńskiej drużyny dołączyli zawodnicy, którzy brali udział w mistrzostwach Europy. Wyjątkiem jest francuski rozgrywający Benjamin Toniutti.\n" " grad_fn=<ExpBackward>) ZAKSA Kędzierzyn-Koźle trenuje już niemal w komplecie Na początku tygodnia do kędzierzyńskiej drużyny dołączyli zawodnicy, którzy brali udział w mistrzostwach Europy. Wyjątkiem jest francuski rozgrywający Benjamin Toniutti.\n",
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.524263858795166 1.2569677829742432 4100 1 tensor([[0.0736, 0.2845, 0.0688, 0.0741, 0.1107, 0.1046, 0.1125, 0.1710]],\n", "1.524263858795166 1.2569677829742432 4100 1 tensor([[0.0736, 0.2845, 0.0688, 0.0741, 0.1107, 0.1046, 0.1125, 0.1710]],\n",
" grad_fn=<ExpBackward>) Krzysztof Hołowczyc trzyma kciuki za Kubicę. \"Ci, którzy nie chcą jego powrotu, po prostu się go boją\" Trwa walka Roberta Kubicy o powrót do Formuły 1. Polak jest jednym z kandydatów do reprezentowania w przyszłym sezonie barw zespołu Williams. Za Kubicę kciuki trzyma Krzysztof Hołowczyc.\n", " grad_fn=<ExpBackward>) Krzysztof Hołowczyc trzyma kciuki za Kubicę. \"Ci, którzy nie chcą jego powrotu, po prostu się go boją\" Trwa walka Roberta Kubicy o powrót do Formuły 1. Polak jest jednym z kandydatów do reprezentowania w przyszłym sezonie barw zespołu Williams. Za Kubicę kciuki trzyma Krzysztof Hołowczyc.\n",
"1.4493881464004517 1.4371377229690552 4150 1 tensor([[0.1067, 0.2376, 0.1001, 0.0918, 0.1164, 0.1187, 0.1077, 0.1211]],\n", "1.4493881464004517 1.4371377229690552 4150 1 tensor([[0.1067, 0.2376, 0.1001, 0.0918, 0.1164, 0.1187, 0.1077, 0.1211]],\n",
@ -2226,11 +2216,14 @@
} }
], ],
"metadata": { "metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3 (ipykernel)",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
"lang": "pl",
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
@ -2241,10 +2234,13 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.9.2" "version": "3.9.6"
}, },
"org": null "org": null,
"subtitle": "9.Przegląd składowych sieci neuronowych[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 1 "nbformat_minor": 4
} }

View File

@ -1,5 +1,19 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 11. <i>Sieci rekurencyjne</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -498,11 +512,14 @@
} }
], ],
"metadata": { "metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3 (ipykernel)",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
"lang": "pl",
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
@ -513,9 +530,12 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.9.2" "version": "3.9.6"
}, },
"org": null "org": null,
"subtitle": "11.Sieci rekurencyjne[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 4 "nbformat_minor": 4

File diff suppressed because one or more lines are too long

View File

@ -1,113 +1,135 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"source": [ "collapsed": false
"## Ekstrakcja informacji a podejście generatywne\n", },
"\n" "source": [
] "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
}, "<div class=\"alert alert-block alert-info\">\n",
{ "<h1> Ekstrakcja informacji </h1>\n",
"cell_type": "markdown", "<h2> 13. <i>Podej\u015bcie generatywne w ekstrakcji informacji</i> [wyk\u0142ad]</h2> \n",
"metadata": {}, "<h3> Filip Grali\u0144ski (2021)</h3>\n",
"source": [ "</div>\n",
"### Podejście generatywne\n", "\n",
"\n" "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Do tej pory zadanie ekstrakcji informacji traktowaliśmy jako zadanie etykietowania sekwencji, tzn. uczyliśmy system zaznaczać tokeny składające się na ekstrahowane informacje.\n", "## Ekstrakcja informacji a podej\u015bcie generatywne\n",
"\n", "\n"
"![img](./ie-seqlab.png)\n", ]
"\n", },
"Możliwe jest inne podeście, **generatywne**, w którym podchodzimy do problemu ekstrakcji informacji jak do swego rodzaju **tłumaczenia maszynowego** — „tłumaczymy” tekst (wraz z pytaniem lub etykietą) na informację.\n", {
"\n", "cell_type": "markdown",
"![img](./ie-gener.png)\n", "metadata": {},
"\n", "source": [
"To podejście może się wydawać trudniejsze niż etykietowanie sekwencji, ale wystarczająco zaawansowanej architekturze sieci, jest wykonalne.\n", "### Podej\u015bcie generatywne\n",
"\n", "\n"
"Zalety:\n", ]
"\n", },
"- informacja nie musi być dosłownie zapisana w tekście, ekstraktor może nauczyć się również normalizacji czy parafrazowania,\n", {
"- nie wprowadzamy wielu kroków przetwarzania (gdzie błędy mogą się\n", "cell_type": "markdown",
" namnażać), system działa na zasadzie *end-to-end*.\n", "metadata": {},
"\n" "source": [
] "Do tej pory zadanie ekstrakcji informacji traktowali\u015bmy jako zadanie etykietowania sekwencji, tzn. uczyli\u015bmy system zaznacza\u0107 tokeny sk\u0142adaj\u0105ce si\u0119 na ekstrahowane informacje.\n",
}, "\n",
{ "![img](./ie-seqlab.png)\n",
"cell_type": "markdown", "\n",
"metadata": {}, "Mo\u017cliwe jest inne pode\u015bcie, **generatywne**, w kt\u00f3rym podchodzimy do problemu ekstrakcji informacji jak do swego rodzaju **t\u0142umaczenia maszynowego** \u2014 \u201et\u0142umaczymy\u201d tekst (wraz z pytaniem lub etykiet\u0105) na informacj\u0119.\n",
"source": [ "\n",
"### Atencja\n", "![img](./ie-gener.png)\n",
"\n" "\n",
] "To podej\u015bcie mo\u017ce si\u0119 wydawa\u0107 trudniejsze ni\u017c etykietowanie sekwencji, ale wystarczaj\u0105co zaawansowanej architekturze sieci, jest wykonalne.\n",
}, "\n",
{ "Zalety:\n",
"cell_type": "markdown", "\n",
"metadata": {}, "- informacja nie musi by\u0107 dos\u0142ownie zapisana w tek\u015bcie, ekstraktor mo\u017ce nauczy\u0107 si\u0119 r\u00f3wnie\u017c normalizacji czy parafrazowania,\n",
"source": [ "- nie wprowadzamy wielu krok\u00f3w przetwarzania (gdzie b\u0142\u0119dy mog\u0105 si\u0119\n",
"Pierwsze systemu neuronowego tłumaczenia maszynowego używały siecie LSTM. Dopiero jednak dodanie tzw. atencji (*attention*) umożliwiło duży przeskok jakościowy. Najpierw atencję dodano do sieci rekurencyjnych, później powstały sieci oparte *wyłącznie* na atencji — modele Transformer.\n", " namna\u017ca\u0107), system dzia\u0142a na zasadzie *end-to-end*.\n",
"\n", "\n"
"Idea atencji polega na tym, że sieć może kierować selektywnie „snop” uwagi na wyrazy na wejściu lub do tej pory wygenerowane wyrazy.\n", ]
"\n", },
"Mechanizm atencji korzysta z:\n", {
"\n", "cell_type": "markdown",
"- z poprzedniego stanu sieci $\\vec{s^{k-1}}$ (to jest „miejsce”, z którego „kierujemy” atencję),\n", "metadata": {},
"- z wektora reprezentującego słowo $\\vec{v}(t_i)$ (to jest „miejsce”, na które kierujemy atencję), gdzie\n", "source": [
" $\\vec{v}(t_i)$ to reprezentacja wektorowa wyrazu $t_i$ (statyczny embedding lub reprezentacja wektorowa\n", "### Atencja\n",
" z poprzedniej warstwy dla sieci wielowarstwowej),\n", "\n"
"\n", ]
"aby wytworzyć wektor kontekstu $\\vec{\\xi^k}$ (który z kolei będzie w jakiś sposób wnosił wkład do wyliczenia nowej wartości stanu $\\vec{s^k}$ lub wyjścia $y^k$.\n", },
"\n", {
"Najpierw wyliczymy skalarne wartości atencji, tzn. liczby, które będą sygnalizowały, jak bardzo wektor $\\vec{v}(t_i)$ „pasuje” do $\\vec{s^{k-1}}$, w najprostszej wersji można po prostu skorzystać z iloczynu skalarnego (o ile $n=m$),\n", "cell_type": "markdown",
"\n", "metadata": {},
"$$a(\\vec{s^{k-1}}, \\vec{v}(t_i)) = \\vec{s^{k-1}}\\vec{v}(t_i).$$\n", "source": [
"\n", "Pierwsze systemu neuronowego t\u0142umaczenia maszynowego u\u017cywa\u0142y siecie LSTM. Dopiero jednak dodanie tzw. atencji (*attention*) umo\u017cliwi\u0142o du\u017cy przeskok jako\u015bciowy. Najpierw atencj\u0119 dodano do sieci rekurencyjnych, p\u00f3\u017aniej powsta\u0142y sieci oparte *wy\u0142\u0105cznie* na atencji \u2014 modele Transformer.\n",
"**Pytanie**: co jeśli $n$ nie jest równe $m$, tzn. rozmiar embeddingu nie jest równy rozmiarowi wektora stanu?\n", "\n",
"\n", "Idea atencji polega na tym, \u017ce sie\u0107 mo\u017ce kierowa\u0107 selektywnie \u201esnop\u201d uwagi na wyrazy na wej\u015bciu lub do tej pory wygenerowane wyrazy.\n",
"W przypadku sieci LSTM korzysta się częściej z bardziej skomplikowanego wzoru zawierającego dodatkowe wyuczalne wagi:\n", "\n",
"\n", "Mechanizm atencji korzysta z:\n",
"$$a(\\vec{s^{k-1}}, \\vec{v}(t_i)) = \\vec{w_a}\\operatorname{tanh}(W_a\\vec{s^{k-1}} + U_a\\vec{v}(t_i))$$\n", "\n",
"\n", "- z poprzedniego stanu sieci $\\vec{s^{k-1}}$ (to jest \u201emiejsce\u201d, z kt\u00f3rego \u201ekierujemy\u201d atencj\u0119),\n",
"**Pytanie**: jakie rozmiary mają macierze $W_a$, $U_a$ i wektor $w_a$?\n", "- z wektora reprezentuj\u0105cego s\u0142owo $\\vec{v}(t_i)$ (to jest \u201emiejsce\u201d, na kt\u00f3re kierujemy atencj\u0119), gdzie\n",
"\n", " $\\vec{v}(t_i)$ to reprezentacja wektorowa wyrazu $t_i$ (statyczny embedding lub reprezentacja wektorowa\n",
"Powtórzmy, że wartości $a$ są wartościami skalarnymi, natomiast nie są one znormalizowane (nie sumują się do jedynki), normalizujemy je używając schematu podobnego do softmaxa:\n", " z poprzedniej warstwy dla sieci wielowarstwowej),\n",
"\n", "\n",
"$$\\alpha_{i} = \\frac{e^{a(\\vec{s^{k-1}}, \\vec{v}(t_i))}}{\\sum_j e^{a(\\vec{s^{k-1}}, \\vec{v}(t_j))}}$$\n", "aby wytworzy\u0107 wektor kontekstu $\\vec{\\xi^k}$ (kt\u00f3ry z kolei b\u0119dzie w jaki\u015b spos\u00f3b wnosi\u0142 wk\u0142ad do wyliczenia nowej warto\u015bci stanu $\\vec{s^k}$ lub wyj\u015bcia $y^k$.\n",
"\n", "\n",
"Wektor kontekstu $\\vec{\\xi^k}$ będzie po prostu średnią ważoną wektorowych reprezentacji słów:\n", "Najpierw wyliczymy skalarne warto\u015bci atencji, tzn. liczby, kt\u00f3re b\u0119d\u0105 sygnalizowa\u0142y, jak bardzo wektor $\\vec{v}(t_i)$ \u201epasuje\u201d do $\\vec{s^{k-1}}$, w najprostszej wersji mo\u017cna po prostu skorzysta\u0107 z iloczynu skalarnego (o ile $n=m$),\n",
"\n", "\n",
"$$\\vec{\\xi^k} = \\sum_i \\alpha_i\\vec{v}(t_i)$$\n", "$$a(\\vec{s^{k-1}}, \\vec{v}(t_i)) = \\vec{s^{k-1}}\\vec{v}(t_i).$$\n",
"\n", "\n",
"**Pytanie**: zasadniczo atencja jest środkiem do celu (żeby sieć się sprawniej uczyła), czy można atencja sama w sobie może być do czegoś przydatna?\n", "**Pytanie**: co je\u015bli $n$ nie jest r\u00f3wne $m$, tzn. rozmiar embeddingu nie jest r\u00f3wny rozmiarowi wektora stanu?\n",
"\n" "\n",
] "W przypadku sieci LSTM korzysta si\u0119 cz\u0119\u015bciej z bardziej skomplikowanego wzoru zawieraj\u0105cego dodatkowe wyuczalne wagi:\n",
} "\n",
], "$$a(\\vec{s^{k-1}}, \\vec{v}(t_i)) = \\vec{w_a}\\operatorname{tanh}(W_a\\vec{s^{k-1}} + U_a\\vec{v}(t_i))$$\n",
"metadata": { "\n",
"kernelspec": { "**Pytanie**: jakie rozmiary maj\u0105 macierze $W_a$, $U_a$ i wektor $w_a$?\n",
"display_name": "Python 3", "\n",
"language": "python", "Powt\u00f3rzmy, \u017ce warto\u015bci $a$ s\u0105 warto\u015bciami skalarnymi, natomiast nie s\u0105 one znormalizowane (nie sumuj\u0105 si\u0119 do jedynki), normalizujemy je u\u017cywaj\u0105c schematu podobnego do softmaxa:\n",
"name": "python3" "\n",
}, "$$\\alpha_{i} = \\frac{e^{a(\\vec{s^{k-1}}, \\vec{v}(t_i))}}{\\sum_j e^{a(\\vec{s^{k-1}}, \\vec{v}(t_j))}}$$\n",
"language_info": { "\n",
"codemirror_mode": { "Wektor kontekstu $\\vec{\\xi^k}$ b\u0119dzie po prostu \u015bredni\u0105 wa\u017con\u0105 wektorowych reprezentacji s\u0142\u00f3w:\n",
"name": "ipython", "\n",
"version": 3 "$$\\vec{\\xi^k} = \\sum_i \\alpha_i\\vec{v}(t_i)$$\n",
}, "\n",
"file_extension": ".py", "**Pytanie**: zasadniczo atencja jest \u015brodkiem do celu (\u017ceby sie\u0107 si\u0119 sprawniej uczy\u0142a), czy mo\u017cna atencja sama w sobie mo\u017ce by\u0107 do czego\u015b przydatna?\n",
"mimetype": "text/x-python", "\n"
"name": "python", ]
"nbconvert_exporter": "python", }
"pygments_lexer": "ipython3", ],
"version": "3.9.2" "metadata": {
}, "kernelspec": {
"org": null "display_name": "Python 3",
}, "language": "python",
"nbformat": 4, "name": "python3"
"nbformat_minor": 1 },
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
},
"org": null,
"author": "Filip Grali\u0144ski",
"email": "filipg@amu.edu.pl",
"lang": "pl",
"subtitle": "13.Podej\u015bcie generatywne w ekstrakcji informacji[wyk\u0142ad]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 1
} }

View File

@ -1,369 +1,391 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"source": [ "collapsed": false
"## Pretrenowanie modeli\n", },
"\n" "source": [
] "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
}, "<div class=\"alert alert-block alert-info\">\n",
{ "<h1> Ekstrakcja informacji </h1>\n",
"cell_type": "markdown", "<h2> 14. <i>Pretrenowane modele j\u0119zyka</i> [wyk\u0142ad]</h2> \n",
"metadata": {}, "<h3> Filip Grali\u0144ski (2021)</h3>\n",
"source": [ "</div>\n",
"System AlphaZero uczy się grając sam ze sobą — wystarczy 24 godziny,\n", "\n",
"by system nauczył się grać w szachy lub go na nadludzkim poziomie.\n", "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
"\n", ]
"**Pytanie**: Dlaczego granie samemu ze sobą nie jest dobrym sposobem\n", },
" nauczenia się grania w szachy dla człowieka, a dla maszyny jest?\n", {
"\n", "cell_type": "markdown",
"Co jest odpowiednikiem grania samemu ze sobą w świecie przetwarzania tekstu?\n", "metadata": {},
"Tzn. **pretrenowanie** (*pretraining*) na dużym korpusie tekstu. (Tekst jest tani!)\n", "source": [
"\n", "## Pretrenowanie modeli\n",
"Jest kilka sposobów na pretrenowanie modelu, w każdym razie sprowadza\n", "\n"
"się do odgadywania następnego bądź zamaskowanego słowa.\n", ]
"W każdym razie zawsze stosujemy softmax (być może ze „sztuczkami” takimi jak\n", },
"negatywne próbkowanie albo hierarchiczny softmax) na pewnej **reprezentacji kontekstowej**:\n", {
"\n", "cell_type": "markdown",
"$$\\vec{p} = \\operatorname{softmax}(f(\\vec{c})).$$\n", "metadata": {},
"\n", "source": [
"Model jest karany używając funkcji log loss:\n", "System AlphaZero uczy si\u0119 graj\u0105c sam ze sob\u0105 \u2014 wystarczy 24 godziny,\n",
"\n", "by system nauczy\u0142 si\u0119 gra\u0107 w szachy lub go na nadludzkim poziomie.\n",
"$$-\\log(p_j),$$\n", "\n",
"\n", "**Pytanie**: Dlaczego granie samemu ze sob\u0105 nie jest dobrym sposobem\n",
"gdzie $w_j$ jest wyrazem, który pojawił się rzeczywiście w korpusie.\n", " nauczenia si\u0119 grania w szachy dla cz\u0142owieka, a dla maszyny jest?\n",
"\n" "\n",
] "Co jest odpowiednikiem grania samemu ze sob\u0105 w \u015bwiecie przetwarzania tekstu?\n",
}, "Tzn. **pretrenowanie** (*pretraining*) na du\u017cym korpusie tekstu. (Tekst jest tani!)\n",
{ "\n",
"cell_type": "markdown", "Jest kilka sposob\u00f3w na pretrenowanie modelu, w ka\u017cdym razie sprowadza\n",
"metadata": {}, "si\u0119 do odgadywania nast\u0119pnego b\u0105d\u017a zamaskowanego s\u0142owa.\n",
"source": [ "W ka\u017cdym razie zawsze stosujemy softmax (by\u0107 mo\u017ce ze \u201esztuczkami\u201d takimi jak\n",
"### Przewidywanie słowa (GPT-2)\n", "negatywne pr\u00f3bkowanie albo hierarchiczny softmax) na pewnej **reprezentacji kontekstowej**:\n",
"\n" "\n",
] "$$\\vec{p} = \\operatorname{softmax}(f(\\vec{c})).$$\n",
}, "\n",
{ "Model jest karany u\u017cywaj\u0105c funkcji log loss:\n",
"cell_type": "markdown", "\n",
"metadata": {}, "$$-\\log(p_j),$$\n",
"source": [ "\n",
"Jeden ze sposobów pretrenowania modelu to po prostu przewidywanie\n", "gdzie $w_j$ jest wyrazem, kt\u00f3ry pojawi\u0142 si\u0119 rzeczywi\u015bcie w korpusie.\n",
"następnego słowa.\n", "\n"
"\n", ]
"Zainstalujmy najpierw bibliotekę transformers.\n", },
"\n" {
] "cell_type": "markdown",
}, "metadata": {},
{ "source": [
"cell_type": "code", "### Przewidywanie s\u0142owa (GPT-2)\n",
"execution_count": 1, "\n"
"metadata": {}, ]
"outputs": [], },
"source": [ {
"! pip install transformers" "cell_type": "markdown",
] "metadata": {},
}, "source": [
{ "Jeden ze sposob\u00f3w pretrenowania modelu to po prostu przewidywanie\n",
"cell_type": "code", "nast\u0119pnego s\u0142owa.\n",
"execution_count": 17, "\n",
"metadata": {}, "Zainstalujmy najpierw bibliotek\u0119 transformers.\n",
"outputs": [ "\n"
{ ]
"name": "stdout", },
"output_type": "stream", {
"text": [ "cell_type": "code",
"50257\n" "execution_count": 1,
] "metadata": {},
"outputs": [],
"source": [
"! pip install transformers"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"50257\n"
]
},
{
"data": {
"text/plain": [
"[('\u00c2\u0142', 0.6182783842086792),\n",
" ('\u00c8', 0.1154019758105278),\n",
" ('\u00d1\u0123', 0.026960616931319237),\n",
" ('_____', 0.024418892338871956),\n",
" ('________', 0.014962316490709782),\n",
" ('\u00c3\u0124', 0.010653386823832989),\n",
" ('\u00e4\u00b8\u0143', 0.008340531960129738),\n",
" ('\u00d1', 0.007557711564004421),\n",
" ('\u00ca', 0.007046067621558905),\n",
" ('\u00e3\u0122', 0.006875576451420784),\n",
" ('ile', 0.006685272324830294),\n",
" ('____', 0.006307446397840977),\n",
" ('\u00e2\u0122\u012d', 0.006306538358330727),\n",
" ('\u00d1\u0122', 0.006197483278810978),\n",
" ('\u0120Belarus', 0.006108700763434172),\n",
" ('\u00c6', 0.005720408633351326),\n",
" ('\u0120Poland', 0.0053678699769079685),\n",
" ('\u00e1\u00b9', 0.004606408067047596),\n",
" ('\u00ee\u0122', 0.004161055199801922),\n",
" ('????', 0.004056799225509167),\n",
" ('_______', 0.0038176667876541615),\n",
" ('\u00e4\u00b8', 0.0036082742735743523),\n",
" ('\u00cc', 0.003221835708245635),\n",
" ('urs', 0.003080119378864765),\n",
" ('________________', 0.0027312245219945908),\n",
" ('\u0120Lithuania', 0.0023860156070441008),\n",
" ('ich', 0.0021211160346865654),\n",
" ('iz', 0.002069818088784814),\n",
" ('vern', 0.002001357264816761),\n",
" ('\u00c5\u0124', 0.001717406208626926)]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"from transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
"tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large')\n",
"model = GPT2LMHeadModel.from_pretrained('gpt2-large')\n",
"text = 'Warsaw is the capital city of'\n",
"encoded_input = tokenizer(text, return_tensors='pt')\n",
"output = model(**encoded_input)\n",
"next_token_probs = torch.softmax(output[0][:, -1, :][0], dim=0)\n",
"\n",
"nb_of_tokens = next_token_probs.size()[0]\n",
"print(nb_of_tokens)\n",
"\n",
"_, top_k_indices = torch.topk(next_token_probs, 30, sorted=True)\n",
"\n",
"words = tokenizer.convert_ids_to_tokens(top_k_indices)\n",
"\n",
"top_probs = []\n",
"\n",
"for ix in range(len(top_k_indices)):\n",
" top_probs.append((words[ix], next_token_probs[top_k_indices[ix]].item()))\n",
"\n",
"top_probs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Zalety tego podej\u015bcia:\n",
"\n",
"- prostota,\n",
"- dobra podstawa do strojenia system\u00f3w generowania tekstu zw\u0142aszcza\n",
" \u201eotwartego\u201d (systemy dialogowe, generowanie (fake) news\u00f3w, streszczanie tekstu),\n",
" ale niekoniecznie t\u0142umaczenia maszynowego,\n",
"- zaskakuj\u0105ca skuteczno\u015b\u0107 przy uczeniu *few-shot* i *zero-shot*.\n",
"\n",
"Wady:\n",
"\n",
"- asymetryczno\u015b\u0107, przetwarzanie tylko z lewej do prawej, preferencja\n",
" dla lewego kontekstu,\n",
"- mniejsza skuteczno\u015b\u0107 przy dostrajaniu do zada\u0144 klasyfikacji i innych zada\u0144\n",
" niepolegaj\u0105cych na prostym generowaniu.\n",
"\n",
"Przyk\u0142ady modeli: GPT, GPT-2, GPT-3, DialoGPT.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Maskowanie s\u0142\u00f3w (BERT)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Inn\u0105 metod\u0105 jest maskowanie s\u0142\u00f3w (*Masked Language Modeling*, *MLM*).\n",
"\n",
"W tym podej\u015bciu losowe wybrane zast\u0119pujemy losowe s\u0142owa specjalnym\n",
"tokenem (`[MASK]`) i ka\u017cemy modelowi odgadywa\u0107 w ten spos\u00f3b\n",
"zamaskowane s\u0142owa (z uwzgl\u0119dnieniem r\u00f3wnie\u017c prawego kontekstu!).\n",
"\n",
"M\u00f3ci\u0105c \u015bci\u015ble, w jednym z pierwszych modeli tego typu (BERT)\n",
"zastosowano schemat, w kt\u00f3rym r\u00f3wnie\u017c niezamaskowane s\u0142owa s\u0105 odgadywane (!):\n",
"\n",
"- wybieramy losowe 15% wyraz\u00f3w do odgadni\u0119cia\n",
"- 80% z nich zast\u0119pujemy tokenem `[MASK]`,\n",
"- 10% zast\u0119pujemy innym losowym wyrazem,\n",
"- 10% pozostawiamy bez zmian.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/filipg/.local/lib/python3.9/site-packages/transformers/models/auto/modeling_auto.py:806: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W USA. (score: 0.16715531051158905)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W India. (score: 0.09912960231304169)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W Indian. (score: 0.039642028510570526)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W Nepal. (score: 0.027137665078043938)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W Pakistan. (score: 0.027065709233283997)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W Polsce. (score: 0.023737527430057526)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W .... (score: 0.02306722290813923)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W Bangladesh. (score: 0.022106658667325974)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W .... (score: 0.01628892682492733)\n",
"W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W Niemczech. (score: 0.014501162804663181)\n"
]
}
],
"source": [
"from transformers import AutoModelWithLMHead, AutoTokenizer\n",
"import torch\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"xlm-roberta-large\")\n",
"model = AutoModelWithLMHead.from_pretrained(\"xlm-roberta-large\")\n",
"\n",
"sequence = f'W kt\u00f3rym pa\u0144stwie le\u017cy Bombaj? W {tokenizer.mask_token}.'\n",
"\n",
"input_ids = tokenizer.encode(sequence, return_tensors=\"pt\")\n",
"mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1]\n",
"\n",
"token_logits = model(input_ids)[0]\n",
"mask_token_logits = token_logits[0, mask_token_index, :]\n",
"mask_token_logits = torch.softmax(mask_token_logits, dim=1)\n",
"\n",
"top_10 = torch.topk(mask_token_logits, 10, dim=1)\n",
"top_10_tokens = zip(top_10.indices[0].tolist(), top_10.values[0].tolist())\n",
"\n",
"for token, score in top_10_tokens:\n",
" print(sequence.replace(tokenizer.mask_token, tokenizer.decode([token])), f\"(score: {score})\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Przyk\u0142ady: BERT, RoBERTa (r\u00f3wnie\u017c Polish RoBERTa).\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podej\u015bcie generatywne (koder-dekoder).\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"System ma wygenerowa\u0107 odpowied\u017a na r\u00f3\u017cne pytania (r\u00f3wnie\u017c\n",
"odpowiadaj\u0105ce zadaniu MLM), np.:\n",
"\n",
"- \"translate English to German: That is good.\" => \"Das ist gut.\"\n",
"- \"cola sentence: The course is jumping well.\" => \"not acceptable\"\n",
"- \"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi&#x2026;\"\n",
" => \"six people hospitalized after a storm in attala county\"\n",
"- \"Thank you for <X> me to your party <Y> week.\" => <X> for inviting <Y> last <Z>\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['World War II ended in World War II.',\n",
" 'World War II ended in 1945..',\n",
" 'World War II ended in 1945.',\n",
" 'World War II ended in 1945.',\n",
" 'World War II ended in 1945.']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import T5Tokenizer, T5Config, T5ForConditionalGeneration\n",
"\n",
"T5_PATH = 't5-base'\n",
"\n",
"t5_tokenizer = T5Tokenizer.from_pretrained(T5_PATH)\n",
"t5_config = T5Config.from_pretrained(T5_PATH)\n",
"t5_mlm = T5ForConditionalGeneration.from_pretrained(T5_PATH, config=t5_config)\n",
"\n",
"slot = '<extra_id_0>'\n",
"\n",
"text = f'World War II ended in {slot}.'\n",
"\n",
"encoded = t5_tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')\n",
"input_ids = encoded['input_ids']\n",
"\n",
"outputs = t5_mlm.generate(input_ids=input_ids,\n",
" num_beams=200, num_return_sequences=5,\n",
" max_length=5)\n",
"\n",
"_0_index = text.index(slot)\n",
"_result_prefix = text[:_0_index]\n",
"_result_suffix = text[_0_index+len(slot):]\n",
"\n",
"def _filter(output, end_token='<extra_id_1>'):\n",
" _txt = t5_tokenizer.decode(output[2:], skip_special_tokens=False, clean_up_tokenization_spaces=False)\n",
" if end_token in _txt:\n",
" _end_token_index = _txt.index(end_token)\n",
" return _result_prefix + _txt[:_end_token_index] + _result_suffix\n",
" else:\n",
" return _result_prefix + _txt + _result_suffix\n",
"\n",
"\n",
"results = [_filter(out) for out in outputs]\n",
"results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(Zob. [https://arxiv.org/pdf/1910.10683.pdf](https://arxiv.org/pdf/1910.10683.pdf))\n",
"\n",
"Przyk\u0142ad: T5, mT5\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"org": null,
"author": "Filip Grali\u0144ski",
"email": "filipg@amu.edu.pl",
"lang": "pl",
"subtitle": "14.Pretrenowane modele j\u0119zyka[wyk\u0142ad]",
"title": "Ekstrakcja informacji",
"year": "2021"
}, },
{ "nbformat": 4,
"data": { "nbformat_minor": 4
"text/plain": [
"[('Âł', 0.6182783842086792),\n",
" ('È', 0.1154019758105278),\n",
" ('Ñģ', 0.026960616931319237),\n",
" ('_____', 0.024418892338871956),\n",
" ('________', 0.014962316490709782),\n",
" ('ÃĤ', 0.010653386823832989),\n",
" ('ä¸Ń', 0.008340531960129738),\n",
" ('Ñ', 0.007557711564004421),\n",
" ('Ê', 0.007046067621558905),\n",
" ('ãĢ', 0.006875576451420784),\n",
" ('ile', 0.006685272324830294),\n",
" ('____', 0.006307446397840977),\n",
" ('âĢĭ', 0.006306538358330727),\n",
" ('ÑĢ', 0.006197483278810978),\n",
" ('ĠBelarus', 0.006108700763434172),\n",
" ('Æ', 0.005720408633351326),\n",
" ('ĠPoland', 0.0053678699769079685),\n",
" ('á¹', 0.004606408067047596),\n",
" ('îĢ', 0.004161055199801922),\n",
" ('????', 0.004056799225509167),\n",
" ('_______', 0.0038176667876541615),\n",
" ('ä¸', 0.0036082742735743523),\n",
" ('Ì', 0.003221835708245635),\n",
" ('urs', 0.003080119378864765),\n",
" ('________________', 0.0027312245219945908),\n",
" ('ĠLithuania', 0.0023860156070441008),\n",
" ('ich', 0.0021211160346865654),\n",
" ('iz', 0.002069818088784814),\n",
" ('vern', 0.002001357264816761),\n",
" ('ÅĤ', 0.001717406208626926)]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"from transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
"tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large')\n",
"model = GPT2LMHeadModel.from_pretrained('gpt2-large')\n",
"text = 'Warsaw is the capital city of'\n",
"encoded_input = tokenizer(text, return_tensors='pt')\n",
"output = model(**encoded_input)\n",
"next_token_probs = torch.softmax(output[0][:, -1, :][0], dim=0)\n",
"\n",
"nb_of_tokens = next_token_probs.size()[0]\n",
"print(nb_of_tokens)\n",
"\n",
"_, top_k_indices = torch.topk(next_token_probs, 30, sorted=True)\n",
"\n",
"words = tokenizer.convert_ids_to_tokens(top_k_indices)\n",
"\n",
"top_probs = []\n",
"\n",
"for ix in range(len(top_k_indices)):\n",
" top_probs.append((words[ix], next_token_probs[top_k_indices[ix]].item()))\n",
"\n",
"top_probs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Zalety tego podejścia:\n",
"\n",
"- prostota,\n",
"- dobra podstawa do strojenia systemów generowania tekstu zwłaszcza\n",
" „otwartego” (systemy dialogowe, generowanie (fake) newsów, streszczanie tekstu),\n",
" ale niekoniecznie tłumaczenia maszynowego,\n",
"- zaskakująca skuteczność przy uczeniu *few-shot* i *zero-shot*.\n",
"\n",
"Wady:\n",
"\n",
"- asymetryczność, przetwarzanie tylko z lewej do prawej, preferencja\n",
" dla lewego kontekstu,\n",
"- mniejsza skuteczność przy dostrajaniu do zadań klasyfikacji i innych zadań\n",
" niepolegających na prostym generowaniu.\n",
"\n",
"Przykłady modeli: GPT, GPT-2, GPT-3, DialoGPT.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Maskowanie słów (BERT)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Inną metodą jest maskowanie słów (*Masked Language Modeling*, *MLM*).\n",
"\n",
"W tym podejściu losowe wybrane zastępujemy losowe słowa specjalnym\n",
"tokenem (`[MASK]`) i każemy modelowi odgadywać w ten sposób\n",
"zamaskowane słowa (z uwzględnieniem również prawego kontekstu!).\n",
"\n",
"Móciąc ściśle, w jednym z pierwszych modeli tego typu (BERT)\n",
"zastosowano schemat, w którym również niezamaskowane słowa są odgadywane (!):\n",
"\n",
"- wybieramy losowe 15% wyrazów do odgadnięcia\n",
"- 80% z nich zastępujemy tokenem `[MASK]`,\n",
"- 10% zastępujemy innym losowym wyrazem,\n",
"- 10% pozostawiamy bez zmian.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/filipg/.local/lib/python3.9/site-packages/transformers/models/auto/modeling_auto.py:806: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"W którym państwie leży Bombaj? W USA. (score: 0.16715531051158905)\n",
"W którym państwie leży Bombaj? W India. (score: 0.09912960231304169)\n",
"W którym państwie leży Bombaj? W Indian. (score: 0.039642028510570526)\n",
"W którym państwie leży Bombaj? W Nepal. (score: 0.027137665078043938)\n",
"W którym państwie leży Bombaj? W Pakistan. (score: 0.027065709233283997)\n",
"W którym państwie leży Bombaj? W Polsce. (score: 0.023737527430057526)\n",
"W którym państwie leży Bombaj? W .... (score: 0.02306722290813923)\n",
"W którym państwie leży Bombaj? W Bangladesh. (score: 0.022106658667325974)\n",
"W którym państwie leży Bombaj? W .... (score: 0.01628892682492733)\n",
"W którym państwie leży Bombaj? W Niemczech. (score: 0.014501162804663181)\n"
]
}
],
"source": [
"from transformers import AutoModelWithLMHead, AutoTokenizer\n",
"import torch\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"xlm-roberta-large\")\n",
"model = AutoModelWithLMHead.from_pretrained(\"xlm-roberta-large\")\n",
"\n",
"sequence = f'W którym państwie leży Bombaj? W {tokenizer.mask_token}.'\n",
"\n",
"input_ids = tokenizer.encode(sequence, return_tensors=\"pt\")\n",
"mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1]\n",
"\n",
"token_logits = model(input_ids)[0]\n",
"mask_token_logits = token_logits[0, mask_token_index, :]\n",
"mask_token_logits = torch.softmax(mask_token_logits, dim=1)\n",
"\n",
"top_10 = torch.topk(mask_token_logits, 10, dim=1)\n",
"top_10_tokens = zip(top_10.indices[0].tolist(), top_10.values[0].tolist())\n",
"\n",
"for token, score in top_10_tokens:\n",
" print(sequence.replace(tokenizer.mask_token, tokenizer.decode([token])), f\"(score: {score})\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Przykłady: BERT, RoBERTa (również Polish RoBERTa).\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście generatywne (koder-dekoder).\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"System ma wygenerować odpowiedź na różne pytania (również\n",
"odpowiadające zadaniu MLM), np.:\n",
"\n",
"- \"translate English to German: That is good.\" => \"Das ist gut.\"\n",
"- \"cola sentence: The course is jumping well.\" => \"not acceptable\"\n",
"- \"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi&#x2026;\"\n",
" => \"six people hospitalized after a storm in attala county\"\n",
"- \"Thank you for <X> me to your party <Y> week.\" => <X> for inviting <Y> last <Z>\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['World War II ended in World War II.',\n",
" 'World War II ended in 1945..',\n",
" 'World War II ended in 1945.',\n",
" 'World War II ended in 1945.',\n",
" 'World War II ended in 1945.']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import T5Tokenizer, T5Config, T5ForConditionalGeneration\n",
"\n",
"T5_PATH = 't5-base'\n",
"\n",
"t5_tokenizer = T5Tokenizer.from_pretrained(T5_PATH)\n",
"t5_config = T5Config.from_pretrained(T5_PATH)\n",
"t5_mlm = T5ForConditionalGeneration.from_pretrained(T5_PATH, config=t5_config)\n",
"\n",
"slot = '<extra_id_0>'\n",
"\n",
"text = f'World War II ended in {slot}.'\n",
"\n",
"encoded = t5_tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')\n",
"input_ids = encoded['input_ids']\n",
"\n",
"outputs = t5_mlm.generate(input_ids=input_ids,\n",
" num_beams=200, num_return_sequences=5,\n",
" max_length=5)\n",
"\n",
"_0_index = text.index(slot)\n",
"_result_prefix = text[:_0_index]\n",
"_result_suffix = text[_0_index+len(slot):]\n",
"\n",
"def _filter(output, end_token='<extra_id_1>'):\n",
" _txt = t5_tokenizer.decode(output[2:], skip_special_tokens=False, clean_up_tokenization_spaces=False)\n",
" if end_token in _txt:\n",
" _end_token_index = _txt.index(end_token)\n",
" return _result_prefix + _txt[:_end_token_index] + _result_suffix\n",
" else:\n",
" return _result_prefix + _txt + _result_suffix\n",
"\n",
"\n",
"results = [_filter(out) for out in outputs]\n",
"results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(Zob. [https://arxiv.org/pdf/1910.10683.pdf](https://arxiv.org/pdf/1910.10683.pdf))\n",
"\n",
"Przykład: T5, mT5\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"org": null
},
"nbformat": 4,
"nbformat_minor": 4
} }

View File

@ -1,5 +1,19 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 15. <i>Sieci Transformer i ich zastosowanie w ekstrakcji informacji</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -226,11 +240,14 @@
} }
], ],
"metadata": { "metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3 (ipykernel)",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
"lang": "pl",
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
@ -241,10 +258,13 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.9.2" "version": "3.9.6"
}, },
"org": null "org": null,
"subtitle": "15.Sieci Transformer i ich zastosowanie w ekstrakcji informacji[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 1 "nbformat_minor": 4
} }