donut/donut-eval.py

91 lines
3.5 KiB
Python
Raw Permalink Normal View History

2022-12-14 15:53:27 +01:00
#!/usr/bin/env python
# coding: utf-8
2022-12-16 15:20:10 +01:00
from transformers import DonutProcessor, VisionEncoderDecoderModel, VisionEncoderDecoderConfig
2022-12-14 15:53:27 +01:00
from datasets import load_dataset
import re
import json
import torch
from tqdm.auto import tqdm
import numpy as np
2022-12-16 13:32:08 +01:00
import pandas as pd
2022-12-14 15:53:27 +01:00
from donut import JSONParseEvaluator
2022-12-16 13:53:03 +01:00
import argparse
from sconf import Config
def main(config):
2022-12-16 15:20:10 +01:00
2022-12-17 10:44:55 +01:00
# image_size = [1920, 2560]
# config_vision = VisionEncoderDecoderConfig.from_pretrained(config.pretrained_model_path)
# config_vision.encoder.image_size = image_size # (height, width)
# config_vision.decoder.max_length = 768
2022-12-16 15:20:10 +01:00
2022-12-16 13:53:03 +01:00
processor = DonutProcessor.from_pretrained(config.pretrained_processor_path)
2022-12-17 10:44:55 +01:00
model = VisionEncoderDecoderModel.from_pretrained(config.pretrained_model_path)
2022-12-17 10:33:03 +01:00
2022-12-17 10:44:55 +01:00
# processor.image_processor.size = image_size[::-1] # should be (width, height)
2022-12-17 10:33:03 +01:00
processor.image_processor.do_align_long_axis = False
2022-12-16 13:53:03 +01:00
dataset = load_dataset(config.validation_dataset_path, split=config.validation_dataset_split)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.eval()
model.to(device)
output_list = []
accs = []
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
# prepare encoder inputs
pixel_values = processor(sample['image'].convert("RGB"), return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# prepare decoder inputs
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
decoder_input_ids = decoder_input_ids.to(device)
# autoregressively generate sequence
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# turn into JSON
seq = processor.batch_decode(outputs.sequences)[0]
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
seq = processor.token2json(seq)
if config.has_metadata:
ground_truth = json.loads(sample["ground_truth"])
ground_truth = ground_truth["gt_parse"]
evaluator = JSONParseEvaluator()
score = evaluator.cal_acc(seq, ground_truth)
accs.append(score)
if config.print_output:
print(seq)
output_list.append(seq)
if config.output_file_dir:
df = pd.DataFrame(map(lambda x: x.get('text_sequence', ''), output_list))
2022-12-16 15:16:46 +01:00
df.to_csv(f'{config.output_file_dir}/{config.test_name}-out.tsv', sep='\t', header=False, index=False)
2022-12-16 13:53:03 +01:00
if config.has_metadata:
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
print(scores, f"length : {len(accs)}")
print("Mean accuracy:", np.mean(accs))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args, left_argv = parser.parse_known_args()
config = Config(args.config)
config.argv_update(left_argv)
2022-12-16 15:16:46 +01:00
main(config)