donut/train_stream.py

136 lines
5.4 KiB
Python
Raw Normal View History

2023-01-25 17:57:33 +01:00
from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
import pytorch_lightning as pl
import os
from huggingface_hub import login
import argparse
from sconf import Config
from utils.checkpoint import CustomCheckpointIO
2023-03-14 15:48:49 +01:00
from utils.donut_dataset_stream import DonutDatasetStream
from utils.donut_model_pl_stream import DonutModelPLModuleStream
2023-01-25 17:57:33 +01:00
from utils.callbacks import PushToHubCallback
import warnings
2023-03-14 15:48:49 +01:00
from datasets import load_dataset, interleave_datasets
from torchdata.datapipes.iter import IterableWrapper
2023-01-25 17:57:33 +01:00
def main(config, hug_token):
config_vision = VisionEncoderDecoderConfig.from_pretrained(
config.pretrained_model_path)
config_vision.encoder.image_size = config.image_size
config_vision.decoder.max_length = config.max_length
processor = DonutProcessor.from_pretrained(config.start_model_path)
model = VisionEncoderDecoderModel.from_pretrained(
config.pretrained_model_path, config=config_vision)
processor.image_processor.size = config.image_size[::-1]
processor.image_processor.do_align_long_axis = False
added_tokens = []
2023-01-25 22:18:39 +01:00
dataset = load_dataset(config.dataset_path, split="train[:80%]")
2023-01-25 21:43:13 +01:00
dataset = dataset.train_test_split(test_size=0.1)
2023-03-14 15:48:49 +01:00
train_dataset_process = DonutDatasetStream(
2023-01-25 17:57:33 +01:00
processor=processor,
model=model,
max_length=config.max_length,
split="train",
task_start_token="<s_cord-v2>",
prompt_end_token="<s_cord-v2>",
added_tokens=added_tokens,
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
2023-03-14 15:48:49 +01:00
val_dataset_process = DonutDatasetStream(
2023-01-25 17:57:33 +01:00
processor=processor,
model=model,
max_length=config.max_length,
2023-01-25 21:43:13 +01:00
split="test",
2023-01-25 17:57:33 +01:00
task_start_token="<s_cord-v2>",
prompt_end_token="<s_cord-v2>",
added_tokens=added_tokens,
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
2023-03-14 15:48:49 +01:00
dataset = load_dataset(config.dataset_path, streaming=True)
val_dataset = dataset.pop('validation')
train_dataset = interleave_datasets(list(dataset.values()))
# train_length = sum(split.num_examples for split in dataset[list(dataset.keys())[0]].info.splits.values() if split.name != 'validation')
# val_length = list(val_dataset.info.splits.values())[-1].num_examples
train_dataset = train_dataset.map(lambda x: train_dataset_process.process(x), remove_columns = ['image', 'ground_truth'])
val_dataset = val_dataset.map(lambda x: val_dataset_process.process(x), remove_columns = ['image', 'ground_truth'])
# train_dataset = train_dataset.with_format('torch')
# val_dataset = val_dataset.with_format('torch')
train_dataset = IterableWrapper(train_dataset)
val_dataset = IterableWrapper(val_dataset)
2023-01-25 17:57:33 +01:00
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids(['<s_cord-v2>'])[0]
2023-03-14 15:48:49 +01:00
train_dataloader = DataLoader(train_dataset, batch_size=1, num_workers=0)
val_dataloader = DataLoader(val_dataset, batch_size=1, num_workers=0)
2023-01-25 17:57:33 +01:00
login(hug_token, True)
2023-03-14 15:48:49 +01:00
model_module = DonutModelPLModuleStream(config.train_config.toDict(), processor, model, max_length=config.max_length, train_dataloader=train_dataloader, val_dataloader=val_dataloader)
2023-01-25 17:57:33 +01:00
wandb_logger = WandbLogger(project="Donut", name=config.wandb_test_name)
2023-03-14 15:48:49 +01:00
if not os.path.exists(config.checkpoint_path):
os.mkdir(config.checkpoint_path)
2023-01-25 17:57:33 +01:00
checkpoint_callback = ModelCheckpoint(
monitor="val_metric",
dirpath=config.checkpoint_path,
filename="artifacts",
save_top_k=1,
save_last=False,
mode="min",
)
custom_ckpt = CustomCheckpointIO()
trainer = pl.Trainer(
accelerator="gpu" if torch.cuda.is_available() else 'cpu', # change to gpu
devices=1,
max_epochs=config.train_config.max_epochs,
val_check_interval=config.train_config.val_check_interval,
check_val_every_n_epoch=config.train_config.check_val_every_n_epoch,
gradient_clip_val=config.train_config.gradient_clip_val,
precision=16, # we'll use mixed precision
plugins=custom_ckpt,
num_sanity_val_steps=0,
logger=wandb_logger,
callbacks=[PushToHubCallback(output_model_path=config.output_model_path), checkpoint_callback],
)
trainer.fit(model_module)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args, left_argv = parser.parse_known_args()
config = Config(args.config)
config.argv_update(left_argv)
2023-03-14 15:48:49 +01:00
hug_token = os.environ.get("HUG_TOKEN", "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")
2023-01-25 17:57:33 +01:00
if not torch.cuda.is_available():
warnings.warn("You don't have cuda available, training might be taking long time or impossible")
if not hug_token:
raise Exception("You need to set up HUG_TOKEN in enviroments to push output model to hub")
main(config, hug_token)