156 lines
6.5 KiB
Python
156 lines
6.5 KiB
Python
|
from datasets import load_dataset
|
||
|
from torch.utils.data import Dataset
|
||
|
import json
|
||
|
from typing import Any, List, Tuple
|
||
|
import random
|
||
|
import torch
|
||
|
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||
|
|
||
|
|
||
|
class DonutDataset(Dataset):
|
||
|
"""
|
||
|
DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
|
||
|
Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
|
||
|
and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string).
|
||
|
Args:
|
||
|
dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
|
||
|
max_length: the max number of tokens for the target sequences
|
||
|
split: whether to load "train", "validation" or "test" split
|
||
|
ignore_id: ignore_index for torch.nn.CrossEntropyLoss
|
||
|
task_start_token: the special token to be fed to the decoder to conduct the target task
|
||
|
prompt_end_token: the special token at the end of the sequences
|
||
|
sort_json_key: whether or not to sort the JSON keys
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
dataset_name_or_path: str,
|
||
|
max_length: int,
|
||
|
processor: DonutProcessor,
|
||
|
model: VisionEncoderDecoderModel,
|
||
|
split: str = "train",
|
||
|
ignore_id: int = -100,
|
||
|
task_start_token: str = "<s>",
|
||
|
prompt_end_token: str = None,
|
||
|
sort_json_key: bool = True,
|
||
|
added_tokens: list = []
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.max_length = max_length
|
||
|
self.split = split
|
||
|
self.processor = processor
|
||
|
self.model = model
|
||
|
self.ignore_id = ignore_id
|
||
|
self.task_start_token = task_start_token
|
||
|
self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token
|
||
|
self.sort_json_key = sort_json_key
|
||
|
self.added_tokens = added_tokens
|
||
|
|
||
|
self.dataset = load_dataset(dataset_name_or_path, split=self.split, stream=True).with_format("torch")
|
||
|
self.dataset_length = len(self.dataset)
|
||
|
|
||
|
self.gt_token_sequences = []
|
||
|
for sample in self.dataset:
|
||
|
ground_truth = json.loads(sample["ground_truth"])
|
||
|
if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
|
||
|
assert isinstance(ground_truth["gt_parses"], list)
|
||
|
gt_jsons = ground_truth["gt_parses"]
|
||
|
else:
|
||
|
assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
|
||
|
gt_jsons = [ground_truth["gt_parse"]]
|
||
|
|
||
|
self.gt_token_sequences.append(
|
||
|
[
|
||
|
self.json2token(
|
||
|
gt_json,
|
||
|
update_special_tokens_for_json_key=self.split == "train",
|
||
|
sort_json_key=self.sort_json_key,
|
||
|
)
|
||
|
+ self.processor.tokenizer.eos_token
|
||
|
for gt_json in gt_jsons # load json from list of json
|
||
|
]
|
||
|
)
|
||
|
|
||
|
self.add_tokens([self.task_start_token, self.prompt_end_token])
|
||
|
self.prompt_end_token_id = self.processor.tokenizer.convert_tokens_to_ids(self.prompt_end_token)
|
||
|
|
||
|
def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
|
||
|
"""
|
||
|
Convert an ordered JSON object into a token sequence
|
||
|
"""
|
||
|
if type(obj) == dict:
|
||
|
if len(obj) == 1 and "text_sequence" in obj:
|
||
|
return obj["text_sequence"]
|
||
|
else:
|
||
|
output = ""
|
||
|
if sort_json_key:
|
||
|
keys = sorted(obj.keys(), reverse=True)
|
||
|
else:
|
||
|
keys = obj.keys()
|
||
|
for k in keys:
|
||
|
if update_special_tokens_for_json_key:
|
||
|
self.add_tokens([fr"<s_{k}>", fr"</s_{k}>"])
|
||
|
output += (
|
||
|
fr"<s_{k}>"
|
||
|
+ self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
|
||
|
+ fr"</s_{k}>"
|
||
|
)
|
||
|
return output
|
||
|
elif type(obj) == list:
|
||
|
return r"<sep/>".join(
|
||
|
[self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
|
||
|
)
|
||
|
else:
|
||
|
obj = str(obj)
|
||
|
if f"<{obj}/>" in self.added_tokens:
|
||
|
obj = f"<{obj}/>" # for categorical special tokens
|
||
|
return obj
|
||
|
|
||
|
def add_tokens(self, list_of_tokens: List[str]):
|
||
|
"""
|
||
|
Add special tokens to tokenizer and resize the token embeddings of the decoder
|
||
|
"""
|
||
|
newly_added_num = self.processor.tokenizer.add_tokens(list_of_tokens)
|
||
|
if newly_added_num > 0:
|
||
|
self.model.decoder.resize_token_embeddings(len(self.processor.tokenizer))
|
||
|
self.added_tokens.extend(list_of_tokens)
|
||
|
|
||
|
# def __len__(self) -> int:
|
||
|
# return self.dataset_length
|
||
|
|
||
|
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Load image from image_path of given dataset_path and convert into input_tensor and labels
|
||
|
Convert gt data into input_ids (tokenized string)
|
||
|
Returns:
|
||
|
input_tensor : preprocessed image
|
||
|
input_ids : tokenized gt_data
|
||
|
labels : masked labels (model doesn't need to predict prompt and pad token)
|
||
|
"""
|
||
|
sample = self.dataset[idx]
|
||
|
|
||
|
# change if not 3 channels
|
||
|
if sample['image'].mode != "RGB":
|
||
|
sample['image'] = sample['image'].convert("RGB")
|
||
|
|
||
|
# inputs
|
||
|
pixel_values = self.processor(sample["image"], random_padding=self.split == "train", return_tensors="pt").pixel_values
|
||
|
pixel_values = pixel_values.squeeze()
|
||
|
|
||
|
# targets
|
||
|
target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1
|
||
|
input_ids = self.processor.tokenizer(
|
||
|
target_sequence,
|
||
|
add_special_tokens=False,
|
||
|
max_length=self.max_length,
|
||
|
padding="max_length",
|
||
|
truncation=True,
|
||
|
return_tensors="pt",
|
||
|
)["input_ids"].squeeze(0)
|
||
|
|
||
|
labels = input_ids.clone()
|
||
|
labels[labels == self.processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token
|
||
|
# labels[: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1] = self.ignore_id # model doesn't need to predict prompt (for VQA)
|
||
|
return pixel_values, labels, target_sequence
|