diff --git a/single_eval.py b/single_eval.py deleted file mode 100644 index 73e986b..0000000 --- a/single_eval.py +++ /dev/null @@ -1,77 +0,0 @@ -from transformers import DonutProcessor, VisionEncoderDecoderModel, VisionEncoderDecoderConfig -import re -import torch -from PIL import Image -import time -from fastapi import FastAPI, UploadFile, File -import io -import os -from sys import platform - -image_size = [1920, 2560] -print("Set up config") -config_vision = VisionEncoderDecoderConfig.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2") -config_vision.encoder.image_size = image_size # (height, width) -config_vision.decoder.max_length = 768 - -processor = DonutProcessor.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2") -model = VisionEncoderDecoderModel.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2", config=config_vision) - -processor.image_processor.size = image_size[::-1] # should be (width, height) -processor.image_processor.do_align_long_axis = False - -# dataset = load_dataset(config.validation_dataset_path, split=config.validation_dataset_split) -device = "cuda" if torch.cuda.is_available() else "cpu" -model.eval() -model.to(device) - -print("Print ipconfig") -if platform == "linux": - os.system("ip r") -else: - os.system("ipconfig") - -print("Starting server") -app = FastAPI() - -@app.get("/test") -async def test(): - return {"message": "Test"} - -@app.post("/process") -async def process_image(file: UploadFile= File(...)): - - request_object_content = await file.read() - input_image = Image.open(io.BytesIO(request_object_content)) - - # prepare encoder inputs - pixel_values = processor(input_image.convert("RGB"), return_tensors="pt").pixel_values - pixel_values = pixel_values.to(device) - # prepare decoder inputs - task_prompt = "" - decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids - decoder_input_ids = decoder_input_ids.to(device) - - print("Start processing") - # autoregressively generate sequence - start_time = time.time() - outputs = model.generate( - pixel_values, - decoder_input_ids=decoder_input_ids, - max_length=model.decoder.config.max_position_embeddings, - early_stopping=True, - pad_token_id=processor.tokenizer.pad_token_id, - eos_token_id=processor.tokenizer.eos_token_id, - use_cache=True, - num_beams=1, - bad_words_ids=[[processor.tokenizer.unk_token_id]], - return_dict_in_generate=True, - ) - processing_time = (time.time() - start_time) - - # turn into JSON - seq = processor.batch_decode(outputs.sequences)[0] - seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") - seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token - seq = processor.token2json(seq) - return {"data": seq['text_sequence'], "processing_time": f"{processing_time} seconds"} diff --git a/test.image.jpg b/test.image.jpg deleted file mode 100644 index 6732149..0000000 Binary files a/test.image.jpg and /dev/null differ diff --git a/train.py b/train.py index 02c3ff5..f37d48a 100644 --- a/train.py +++ b/train.py @@ -13,6 +13,8 @@ from utils.donut_dataset import DonutDataset from utils.donut_model_pl import DonutModelPLModule from utils.callbacks import PushToHubCallback import warnings +from datasets import load_dataset + @@ -32,8 +34,12 @@ def main(config, hug_token): added_tokens = [] + dataset = load_dataset(config.dataset_path, split='train', streaming=True) + train_dataset = dataset.skip(100) + validation_dataset = dataset.take(100) + train_dataset = DonutDataset( - config.dataset_path, + train_dataset, processor=processor, model=model, max_length=config.max_length, @@ -45,7 +51,7 @@ def main(config, hug_token): ) val_dataset = DonutDataset( - config.dataset_path, + validation_dataset, processor=processor, model=model, max_length=config.max_length, diff --git a/utils/donut_dataset.py b/utils/donut_dataset.py index dc40e6c..0474a87 100644 --- a/utils/donut_dataset.py +++ b/utils/donut_dataset.py @@ -24,7 +24,7 @@ class DonutDataset(Dataset): def __init__( self, - dataset_name_or_path: str, + dataset: Dataset, max_length: int, processor: DonutProcessor, model: VisionEncoderDecoderModel, @@ -47,8 +47,8 @@ class DonutDataset(Dataset): self.sort_json_key = sort_json_key self.added_tokens = added_tokens - self.dataset = load_dataset(dataset_name_or_path, split=self.split) - self.dataset_length = len(self.dataset) + self.dataset = dataset + self.dataset_length = len(list(self.dataset)) self.gt_token_sequences = [] for sample in self.dataset: