config and params for donut-eval
This commit is contained in:
parent
d98383197f
commit
8ccd1aabb6
7
config.yaml
Normal file
7
config.yaml
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
pretrained_processor_path: "Zombely/plwiki-proto-fine-tuned-v2"
|
||||||
|
pretrained_model_path: "Zombely/plwiki-proto-fine-tuned-v2"
|
||||||
|
validation_dataset_path: "Zombely/diachronia-ocr"
|
||||||
|
validation_dataset_split: "train"
|
||||||
|
has_metadata: False
|
||||||
|
print_output: True
|
||||||
|
output_file_dir: "../../gonito-outs"
|
127
donut-eval.py
127
donut-eval.py
@ -1,9 +1,6 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# coding: utf-8
|
# coding: utf-8
|
||||||
|
|
||||||
# In[1]:
|
|
||||||
|
|
||||||
|
|
||||||
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
import re
|
import re
|
||||||
@ -13,75 +10,71 @@ from tqdm.auto import tqdm
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from donut import JSONParseEvaluator
|
from donut import JSONParseEvaluator
|
||||||
|
import argparse
|
||||||
|
from sconf import Config
|
||||||
|
|
||||||
|
def main(config):
|
||||||
|
processor = DonutProcessor.from_pretrained(config.pretrained_processor_path)
|
||||||
|
model = VisionEncoderDecoderModel.from_pretrained(config.pretrained_model_path)
|
||||||
|
dataset = load_dataset(config.validation_dataset_path, split=config.validation_dataset_split)
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
model.eval()
|
||||||
|
model.to(device)
|
||||||
|
output_list = []
|
||||||
|
accs = []
|
||||||
|
|
||||||
# In[2]:
|
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
||||||
|
# prepare encoder inputs
|
||||||
|
pixel_values = processor(sample['image'].convert("RGB"), return_tensors="pt").pixel_values
|
||||||
|
pixel_values = pixel_values.to(device)
|
||||||
|
# prepare decoder inputs
|
||||||
|
task_prompt = "<s_cord-v2>"
|
||||||
|
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||||
|
decoder_input_ids = decoder_input_ids.to(device)
|
||||||
|
|
||||||
|
# autoregressively generate sequence
|
||||||
|
outputs = model.generate(
|
||||||
|
pixel_values,
|
||||||
|
decoder_input_ids=decoder_input_ids,
|
||||||
|
max_length=model.decoder.config.max_position_embeddings,
|
||||||
|
early_stopping=True,
|
||||||
|
pad_token_id=processor.tokenizer.pad_token_id,
|
||||||
|
eos_token_id=processor.tokenizer.eos_token_id,
|
||||||
|
use_cache=True,
|
||||||
|
num_beams=1,
|
||||||
|
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||||
|
return_dict_in_generate=True,
|
||||||
|
)
|
||||||
|
|
||||||
processor = DonutProcessor.from_pretrained("Zombely/plwiki-proto-fine-tuned-v2")
|
# turn into JSON
|
||||||
model = VisionEncoderDecoderModel.from_pretrained("Zombely/plwiki-proto-fine-tuned-v2")
|
seq = processor.batch_decode(outputs.sequences)[0]
|
||||||
|
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||||
|
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
||||||
|
seq = processor.token2json(seq)
|
||||||
|
if config.has_metadata:
|
||||||
|
ground_truth = json.loads(sample["ground_truth"])
|
||||||
|
ground_truth = ground_truth["gt_parse"]
|
||||||
|
evaluator = JSONParseEvaluator()
|
||||||
|
score = evaluator.cal_acc(seq, ground_truth)
|
||||||
|
|
||||||
|
accs.append(score)
|
||||||
|
if config.print_output:
|
||||||
|
print(seq)
|
||||||
|
output_list.append(seq)
|
||||||
|
if config.output_file_dir:
|
||||||
|
df = pd.DataFrame(map(lambda x: x.get('text_sequence', ''), output_list))
|
||||||
|
df.to_csv(f'{config.output_file_dir}/{config.pretrained_processor_path}-out.tsv', sep='\t', header=False, index=False)
|
||||||
|
|
||||||
# In[3]:
|
if config.has_metadata:
|
||||||
|
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
|
||||||
|
print(scores, f"length : {len(accs)}")
|
||||||
|
print("Mean accuracy:", np.mean(accs))
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--config", type=str, required=True)
|
||||||
|
args, left_argv = parser.parse_known_args()
|
||||||
|
config = Config(args.config)
|
||||||
|
config.argv_update(left_argv)
|
||||||
|
|
||||||
dataset = load_dataset("Zombely/diachronia-ocr", split='train')
|
main(config)
|
||||||
|
|
||||||
|
|
||||||
# In[4]:
|
|
||||||
|
|
||||||
|
|
||||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
||||||
|
|
||||||
model.eval()
|
|
||||||
model.to(device)
|
|
||||||
|
|
||||||
output_list = []
|
|
||||||
accs = []
|
|
||||||
has_metadata = bool(dataset[0].get('ground_truth'))
|
|
||||||
|
|
||||||
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
|
||||||
# prepare encoder inputs
|
|
||||||
pixel_values = processor(sample['image'].convert("RGB"), return_tensors="pt").pixel_values
|
|
||||||
pixel_values = pixel_values.to(device)
|
|
||||||
# prepare decoder inputs
|
|
||||||
task_prompt = "<s_cord-v2>"
|
|
||||||
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
|
||||||
decoder_input_ids = decoder_input_ids.to(device)
|
|
||||||
|
|
||||||
# autoregressively generate sequence
|
|
||||||
outputs = model.generate(
|
|
||||||
pixel_values,
|
|
||||||
decoder_input_ids=decoder_input_ids,
|
|
||||||
max_length=model.decoder.config.max_position_embeddings,
|
|
||||||
early_stopping=True,
|
|
||||||
pad_token_id=processor.tokenizer.pad_token_id,
|
|
||||||
eos_token_id=processor.tokenizer.eos_token_id,
|
|
||||||
use_cache=True,
|
|
||||||
num_beams=1,
|
|
||||||
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
|
||||||
return_dict_in_generate=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# turn into JSON
|
|
||||||
seq = processor.batch_decode(outputs.sequences)[0]
|
|
||||||
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
|
||||||
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
|
||||||
seq = processor.token2json(seq)
|
|
||||||
if has_metadata:
|
|
||||||
ground_truth = json.loads(sample["ground_truth"])
|
|
||||||
ground_truth = ground_truth["gt_parse"]
|
|
||||||
evaluator = JSONParseEvaluator()
|
|
||||||
score = evaluator.cal_acc(seq, ground_truth)
|
|
||||||
|
|
||||||
accs.append(score)
|
|
||||||
print(seq)
|
|
||||||
output_list.append(seq)
|
|
||||||
df = pd.DataFrame(map(lambda x: x.get('text_sequence', ''), output_list))
|
|
||||||
df.to_csv('out.tsv', sep='\t', header=False, index=False)
|
|
||||||
|
|
||||||
if has_metadata:
|
|
||||||
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
|
|
||||||
print(scores, f"length : {len(accs)}")
|
|
||||||
print("Mean accuracy:", np.mean(accs))
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user