config and params for donut-eval
This commit is contained in:
parent
d98383197f
commit
8ccd1aabb6
7
config.yaml
Normal file
7
config.yaml
Normal file
@ -0,0 +1,7 @@
|
||||
pretrained_processor_path: "Zombely/plwiki-proto-fine-tuned-v2"
|
||||
pretrained_model_path: "Zombely/plwiki-proto-fine-tuned-v2"
|
||||
validation_dataset_path: "Zombely/diachronia-ocr"
|
||||
validation_dataset_split: "train"
|
||||
has_metadata: False
|
||||
print_output: True
|
||||
output_file_dir: "../../gonito-outs"
|
127
donut-eval.py
127
donut-eval.py
@ -1,9 +1,6 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
from datasets import load_dataset
|
||||
import re
|
||||
@ -13,75 +10,71 @@ from tqdm.auto import tqdm
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from donut import JSONParseEvaluator
|
||||
import argparse
|
||||
from sconf import Config
|
||||
|
||||
def main(config):
|
||||
processor = DonutProcessor.from_pretrained(config.pretrained_processor_path)
|
||||
model = VisionEncoderDecoderModel.from_pretrained(config.pretrained_model_path)
|
||||
dataset = load_dataset(config.validation_dataset_path, split=config.validation_dataset_split)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model.eval()
|
||||
model.to(device)
|
||||
output_list = []
|
||||
accs = []
|
||||
|
||||
# In[2]:
|
||||
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
||||
# prepare encoder inputs
|
||||
pixel_values = processor(sample['image'].convert("RGB"), return_tensors="pt").pixel_values
|
||||
pixel_values = pixel_values.to(device)
|
||||
# prepare decoder inputs
|
||||
task_prompt = "<s_cord-v2>"
|
||||
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
decoder_input_ids = decoder_input_ids.to(device)
|
||||
|
||||
# autoregressively generate sequence
|
||||
outputs = model.generate(
|
||||
pixel_values,
|
||||
decoder_input_ids=decoder_input_ids,
|
||||
max_length=model.decoder.config.max_position_embeddings,
|
||||
early_stopping=True,
|
||||
pad_token_id=processor.tokenizer.pad_token_id,
|
||||
eos_token_id=processor.tokenizer.eos_token_id,
|
||||
use_cache=True,
|
||||
num_beams=1,
|
||||
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
return_dict_in_generate=True,
|
||||
)
|
||||
|
||||
processor = DonutProcessor.from_pretrained("Zombely/plwiki-proto-fine-tuned-v2")
|
||||
model = VisionEncoderDecoderModel.from_pretrained("Zombely/plwiki-proto-fine-tuned-v2")
|
||||
# turn into JSON
|
||||
seq = processor.batch_decode(outputs.sequences)[0]
|
||||
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
||||
seq = processor.token2json(seq)
|
||||
if config.has_metadata:
|
||||
ground_truth = json.loads(sample["ground_truth"])
|
||||
ground_truth = ground_truth["gt_parse"]
|
||||
evaluator = JSONParseEvaluator()
|
||||
score = evaluator.cal_acc(seq, ground_truth)
|
||||
|
||||
accs.append(score)
|
||||
if config.print_output:
|
||||
print(seq)
|
||||
output_list.append(seq)
|
||||
if config.output_file_dir:
|
||||
df = pd.DataFrame(map(lambda x: x.get('text_sequence', ''), output_list))
|
||||
df.to_csv(f'{config.output_file_dir}/{config.pretrained_processor_path}-out.tsv', sep='\t', header=False, index=False)
|
||||
|
||||
# In[3]:
|
||||
if config.has_metadata:
|
||||
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
|
||||
print(scores, f"length : {len(accs)}")
|
||||
print("Mean accuracy:", np.mean(accs))
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config", type=str, required=True)
|
||||
args, left_argv = parser.parse_known_args()
|
||||
config = Config(args.config)
|
||||
config.argv_update(left_argv)
|
||||
|
||||
dataset = load_dataset("Zombely/diachronia-ocr", split='train')
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
output_list = []
|
||||
accs = []
|
||||
has_metadata = bool(dataset[0].get('ground_truth'))
|
||||
|
||||
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
||||
# prepare encoder inputs
|
||||
pixel_values = processor(sample['image'].convert("RGB"), return_tensors="pt").pixel_values
|
||||
pixel_values = pixel_values.to(device)
|
||||
# prepare decoder inputs
|
||||
task_prompt = "<s_cord-v2>"
|
||||
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
decoder_input_ids = decoder_input_ids.to(device)
|
||||
|
||||
# autoregressively generate sequence
|
||||
outputs = model.generate(
|
||||
pixel_values,
|
||||
decoder_input_ids=decoder_input_ids,
|
||||
max_length=model.decoder.config.max_position_embeddings,
|
||||
early_stopping=True,
|
||||
pad_token_id=processor.tokenizer.pad_token_id,
|
||||
eos_token_id=processor.tokenizer.eos_token_id,
|
||||
use_cache=True,
|
||||
num_beams=1,
|
||||
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
return_dict_in_generate=True,
|
||||
)
|
||||
|
||||
# turn into JSON
|
||||
seq = processor.batch_decode(outputs.sequences)[0]
|
||||
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
||||
seq = processor.token2json(seq)
|
||||
if has_metadata:
|
||||
ground_truth = json.loads(sample["ground_truth"])
|
||||
ground_truth = ground_truth["gt_parse"]
|
||||
evaluator = JSONParseEvaluator()
|
||||
score = evaluator.cal_acc(seq, ground_truth)
|
||||
|
||||
accs.append(score)
|
||||
print(seq)
|
||||
output_list.append(seq)
|
||||
df = pd.DataFrame(map(lambda x: x.get('text_sequence', ''), output_list))
|
||||
df.to_csv('out.tsv', sep='\t', header=False, index=False)
|
||||
|
||||
if has_metadata:
|
||||
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
|
||||
print(scores, f"length : {len(accs)}")
|
||||
print("Mean accuracy:", np.mean(accs))
|
||||
|
||||
main(config)
|
Loading…
Reference in New Issue
Block a user