diff --git a/.gitignore b/.gitignore index 5cee8f1..747d90c 100644 --- a/.gitignore +++ b/.gitignore @@ -3,4 +3,5 @@ Donut nohup.out wandb __pycache__/ -checkpoint \ No newline at end of file +checkpoint +.vscode \ No newline at end of file diff --git a/train_stream.py b/train_stream.py index 3079ffc..4e21818 100644 --- a/train_stream.py +++ b/train_stream.py @@ -1,3 +1,4 @@ +from typing import Any, List from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel import torch from torch.utils.data import DataLoader @@ -15,7 +16,7 @@ from utils.callbacks import PushToHubCallback import warnings from datasets import load_dataset, interleave_datasets from torchdata.datapipes.iter import IterableWrapper - +import json def main(config, hug_token): @@ -34,30 +35,128 @@ def main(config, hug_token): added_tokens = [] - dataset = load_dataset(config.dataset_path, split="train[:80%]") - dataset = dataset.train_test_split(test_size=0.1) + ### PROCESS FUNC START ### - train_dataset_process = DonutDatasetStream( - processor=processor, - model=model, - max_length=config.max_length, - split="train", - task_start_token="", - prompt_end_token="", - added_tokens=added_tokens, - sort_json_key=False, # cord dataset is preprocessed, so no need for this - ) + def add_tokens(list_of_tokens: List[str]): + """ + Add special tokens to tokenizer and resize the token embeddings of the decoder + """ + newly_added_num = processor.tokenizer.add_tokens(list_of_tokens) + if newly_added_num > 0: + model.decoder.resize_token_embeddings(len(processor.tokenizer)) + added_tokens.extend(list_of_tokens) - val_dataset_process = DonutDatasetStream( - processor=processor, - model=model, - max_length=config.max_length, - split="test", - task_start_token="", - prompt_end_token="", - added_tokens=added_tokens, - sort_json_key=False, # cord dataset is preprocessed, so no need for this + def json2token(obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True): + """ + Convert an ordered JSON object into a token sequence + """ + if type(obj) == dict: + if len(obj) == 1 and "text_sequence" in obj: + return obj["text_sequence"] + else: + output = "" + if sort_json_key: + keys = sorted(obj.keys(), reverse=True) + else: + keys = obj.keys() + for k in keys: + if update_special_tokens_for_json_key: + add_tokens([fr"", fr""]) + output += ( + fr"" + + json2token(obj[k], update_special_tokens_for_json_key, sort_json_key) + + fr"" ) + return output + elif type(obj) == list: + return r"".join( + [json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj] + ) + else: + obj = str(obj) + if f"<{obj}/>" in added_tokens: + obj = f"<{obj}/>" # for categorical special tokens + return obj + + def process(row, split): + task_start_token, prompt_end_token = "" + ground_truth = json.loads(row["ground_truth"]) + if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa + assert isinstance(ground_truth["gt_parses"], list) + gt_jsons = ground_truth["gt_parses"] + else: + assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict) + gt_jsons = [ground_truth["gt_parse"]] + + gt_token_sequences = ( + [ + json2token( + gt_json, + update_special_tokens_for_json_key=split == "train", + sort_json_key=False, + ) + + processor.tokenizer.eos_token + for gt_json in gt_jsons # load json from list of json + ] + ) + + add_tokens([task_start_token, prompt_end_token]) + prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(prompt_end_token) + + # change if not 3 channels + if row['image'].mode != "RGB": + row['image'] = row['image'].convert("RGB") + + # inputs + pixel_values = processor(row["image"], random_padding=split == "train", return_tensors="pt").pixel_values + pixel_values = pixel_values.squeeze() + + # targets + input_ids = processor.tokenizer( + gt_token_sequences, + add_special_tokens=False, + max_length=config.max_length, + padding="max_length", + truncation=True, + return_tensors="pt", + )["input_ids"].squeeze(0) + + labels = input_ids.clone() + labels[labels == processor.tokenizer.pad_token_id] = -100 # model doesn't need to predict pad token + return {"pixel_values": pixel_values, "labels": labels, 'target_sequence': gt_token_sequences } + + def proces_train(row): + return process(row, 'train') + + def proces_val(row): + return process(row, 'validation') + + + + + ### PROCESS FUNC END ### + + # train_dataset_process = DonutDatasetStream( + # processor=processor, + # model=model, + # max_length=config.max_length, + # split="train", + # task_start_token="", + # prompt_end_token="", + # added_tokens=added_tokens, + # sort_json_key=False, # cord dataset is preprocessed, so no need for this + # ) + + # val_dataset_process = DonutDatasetStream( + # processor=processor, + # model=model, + # max_length=config.max_length, + # split="validation", + # task_start_token="", + # prompt_end_token="", + # added_tokens=added_tokens, + # sort_json_key=False, # cord dataset is preprocessed, so no need for this + # ) dataset = load_dataset(config.dataset_path, streaming=True) val_dataset = dataset.pop('validation') @@ -66,8 +165,8 @@ def main(config, hug_token): # val_length = list(val_dataset.info.splits.values())[-1].num_examples - train_dataset = train_dataset.map(lambda x: train_dataset_process.process(x), remove_columns = ['image', 'ground_truth']) - val_dataset = val_dataset.map(lambda x: val_dataset_process.process(x), remove_columns = ['image', 'ground_truth']) + train_dataset = train_dataset.map(proces_train, remove_columns = ['image', 'ground_truth']) + val_dataset = val_dataset.map(proces_val, remove_columns = ['image', 'ground_truth']) # train_dataset = train_dataset.with_format('torch') # val_dataset = val_dataset.with_format('torch') diff --git a/utils/donut_dataset_stream.py b/utils/donut_dataset_stream.py index 3757a4d..62f06ea 100644 --- a/utils/donut_dataset_stream.py +++ b/utils/donut_dataset_stream.py @@ -8,19 +8,6 @@ from transformers import DonutProcessor, VisionEncoderDecoderModel class DonutDatasetStream: - """ - DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets) - Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt), - and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string). - Args: - dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl - max_length: the max number of tokens for the target sequences - split: whether to load "train", "validation" or "test" split - ignore_id: ignore_index for torch.nn.CrossEntropyLoss - task_start_token: the special token to be fed to the decoder to conduct the target task - prompt_end_token: the special token at the end of the sequences - sort_json_key: whether or not to sort the JSON keys - """ def __init__( self, @@ -34,7 +21,6 @@ class DonutDatasetStream: sort_json_key: bool = True, added_tokens: list = [] ): - super().__init__() self.split = split self.max_length = max_length