diff --git a/utils/__init__.py b/utils/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/utils/checkpoint.py b/utils/checkpoint.py new file mode 100644 index 0000000..2374d19 --- /dev/null +++ b/utils/checkpoint.py @@ -0,0 +1,17 @@ +import torch +from pytorch_lightning.plugins import CheckpointIO + + +class CustomCheckpointIO(CheckpointIO): + def save_checkpoint(self, checkpoint, path, storage_options=None): + del checkpoint["state_dict"] + torch.save(checkpoint, path) + + def load_checkpoint(self, path, storage_options=None): + checkpoint = torch.load(path + "artifacts.ckpt") + state_dict = torch.load(path + "pytorch_model.bin") + checkpoint["state_dict"] = {"model." + key: value for key, value in state_dict.items()} + return checkpoint + + def remove_checkpoint(self, path) -> None: + return super().remove_checkpoint(path) \ No newline at end of file diff --git a/utils/donut_dataset.py b/utils/donut_dataset.py new file mode 100644 index 0000000..16efbb4 --- /dev/null +++ b/utils/donut_dataset.py @@ -0,0 +1,136 @@ +class DonutDataset(Dataset): + """ + DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets) + Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt), + and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string). + Args: + dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl + max_length: the max number of tokens for the target sequences + split: whether to load "train", "validation" or "test" split + ignore_id: ignore_index for torch.nn.CrossEntropyLoss + task_start_token: the special token to be fed to the decoder to conduct the target task + prompt_end_token: the special token at the end of the sequences + sort_json_key: whether or not to sort the JSON keys + """ + + def __init__( + self, + dataset_name_or_path: str, + max_length: int, + split: str = "train", + ignore_id: int = -100, + task_start_token: str = "", + prompt_end_token: str = None, + sort_json_key: bool = True, + ): + super().__init__() + + self.max_length = max_length + self.split = split + self.ignore_id = ignore_id + self.task_start_token = task_start_token + self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token + self.sort_json_key = sort_json_key + + self.dataset = load_dataset(dataset_name_or_path, split=self.split) + self.dataset_length = len(self.dataset) + + self.gt_token_sequences = [] + for sample in self.dataset: + ground_truth = json.loads(sample["ground_truth"]) + if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa + assert isinstance(ground_truth["gt_parses"], list) + gt_jsons = ground_truth["gt_parses"] + else: + assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict) + gt_jsons = [ground_truth["gt_parse"]] + + self.gt_token_sequences.append( + [ + self.json2token( + gt_json, + update_special_tokens_for_json_key=self.split == "train", + sort_json_key=self.sort_json_key, + ) + + processor.tokenizer.eos_token + for gt_json in gt_jsons # load json from list of json + ] + ) + + self.add_tokens([self.task_start_token, self.prompt_end_token]) + self.prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(self.prompt_end_token) + + def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True): + """ + Convert an ordered JSON object into a token sequence + """ + if type(obj) == dict: + if len(obj) == 1 and "text_sequence" in obj: + return obj["text_sequence"] + else: + output = "" + if sort_json_key: + keys = sorted(obj.keys(), reverse=True) + else: + keys = obj.keys() + for k in keys: + if update_special_tokens_for_json_key: + self.add_tokens([fr"", fr""]) + output += ( + fr"" + + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key) + + fr"" + ) + return output + elif type(obj) == list: + return r"".join( + [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj] + ) + else: + obj = str(obj) + if f"<{obj}/>" in added_tokens: + obj = f"<{obj}/>" # for categorical special tokens + return obj + + def add_tokens(self, list_of_tokens: List[str]): + """ + Add special tokens to tokenizer and resize the token embeddings of the decoder + """ + newly_added_num = processor.tokenizer.add_tokens(list_of_tokens) + if newly_added_num > 0: + model.decoder.resize_token_embeddings(len(processor.tokenizer)) + added_tokens.extend(list_of_tokens) + + def __len__(self) -> int: + return self.dataset_length + + def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Load image from image_path of given dataset_path and convert into input_tensor and labels + Convert gt data into input_ids (tokenized string) + Returns: + input_tensor : preprocessed image + input_ids : tokenized gt_data + labels : masked labels (model doesn't need to predict prompt and pad token) + """ + sample = self.dataset[idx] + + # inputs + pixel_values = processor(sample["image"], random_padding=self.split == "train", return_tensors="pt").pixel_values + pixel_values = pixel_values.squeeze() + + # targets + target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1 + input_ids = processor.tokenizer( + target_sequence, + add_special_tokens=False, + max_length=self.max_length, + padding="max_length", + truncation=True, + return_tensors="pt", + )["input_ids"].squeeze(0) + + labels = input_ids.clone() + labels[labels == processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token + # labels[: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1] = self.ignore_id # model doesn't need to predict prompt (for VQA) + return pixel_values, labels, target_sequence