modifcation to train and eval
This commit is contained in:
parent
67cc4bdf7c
commit
d98383197f
@ -11,21 +11,21 @@ import json
|
|||||||
import torch
|
import torch
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
from donut import JSONParseEvaluator
|
from donut import JSONParseEvaluator
|
||||||
|
|
||||||
|
|
||||||
# In[2]:
|
# In[2]:
|
||||||
|
|
||||||
|
|
||||||
processor = DonutProcessor.from_pretrained("Zombely/plwiki-proto-fine-tuned")
|
processor = DonutProcessor.from_pretrained("Zombely/plwiki-proto-fine-tuned-v2")
|
||||||
model = VisionEncoderDecoderModel.from_pretrained("Zombely/plwiki-proto-fine-tuned")
|
model = VisionEncoderDecoderModel.from_pretrained("Zombely/plwiki-proto-fine-tuned-v2")
|
||||||
|
|
||||||
|
|
||||||
# In[3]:
|
# In[3]:
|
||||||
|
|
||||||
|
|
||||||
dataset = load_dataset("Zombely/pl-text-images-5000-whole", split="validation")
|
dataset = load_dataset("Zombely/diachronia-ocr", split='train')
|
||||||
|
|
||||||
|
|
||||||
# In[4]:
|
# In[4]:
|
||||||
@ -38,11 +38,11 @@ model.to(device)
|
|||||||
|
|
||||||
output_list = []
|
output_list = []
|
||||||
accs = []
|
accs = []
|
||||||
|
has_metadata = bool(dataset[0].get('ground_truth'))
|
||||||
|
|
||||||
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
||||||
# prepare encoder inputs
|
# prepare encoder inputs
|
||||||
pixel_values = processor(sample["image"].convert("RGB"), return_tensors="pt").pixel_values
|
pixel_values = processor(sample['image'].convert("RGB"), return_tensors="pt").pixel_values
|
||||||
pixel_values = pixel_values.to(device)
|
pixel_values = pixel_values.to(device)
|
||||||
# prepare decoder inputs
|
# prepare decoder inputs
|
||||||
task_prompt = "<s_cord-v2>"
|
task_prompt = "<s_cord-v2>"
|
||||||
@ -68,16 +68,20 @@ for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
|||||||
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||||
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
||||||
seq = processor.token2json(seq)
|
seq = processor.token2json(seq)
|
||||||
|
if has_metadata:
|
||||||
|
ground_truth = json.loads(sample["ground_truth"])
|
||||||
|
ground_truth = ground_truth["gt_parse"]
|
||||||
|
evaluator = JSONParseEvaluator()
|
||||||
|
score = evaluator.cal_acc(seq, ground_truth)
|
||||||
|
|
||||||
ground_truth = json.loads(sample["ground_truth"])
|
accs.append(score)
|
||||||
ground_truth = ground_truth["gt_parse"]
|
print(seq)
|
||||||
evaluator = JSONParseEvaluator()
|
|
||||||
score = evaluator.cal_acc(seq, ground_truth)
|
|
||||||
|
|
||||||
accs.append(score)
|
|
||||||
output_list.append(seq)
|
output_list.append(seq)
|
||||||
|
df = pd.DataFrame(map(lambda x: x.get('text_sequence', ''), output_list))
|
||||||
|
df.to_csv('out.tsv', sep='\t', header=False, index=False)
|
||||||
|
|
||||||
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
|
if has_metadata:
|
||||||
print(scores, f"length : {len(accs)}")
|
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
|
||||||
print("Mean accuracy:", np.mean(accs))
|
print(scores, f"length : {len(accs)}")
|
||||||
|
print("Mean accuracy:", np.mean(accs))
|
||||||
|
|
||||||
|
@ -22,7 +22,7 @@ from pytorch_lightning.plugins import CheckpointIO
|
|||||||
|
|
||||||
|
|
||||||
DATASET_PATH = "Zombely/pl-text-images-5000-whole"
|
DATASET_PATH = "Zombely/pl-text-images-5000-whole"
|
||||||
PRETRAINED_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned"
|
PRETRAINED_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned-v2"
|
||||||
START_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned"
|
START_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned"
|
||||||
OUTPUT_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned-v2"
|
OUTPUT_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned-v2"
|
||||||
LOGGING_PATH = "plwiki-proto-ft-second-iter"
|
LOGGING_PATH = "plwiki-proto-ft-second-iter"
|
||||||
@ -30,8 +30,8 @@ CHECKPOINT_PATH = "./checkpoint"
|
|||||||
|
|
||||||
|
|
||||||
train_config = {
|
train_config = {
|
||||||
"max_epochs":30,
|
"max_epochs":1,
|
||||||
"val_check_interval":0.5, # how many times we want to validate during an epoch
|
"val_check_interval":1.0, # how many times we want to validate during an epoch
|
||||||
"check_val_every_n_epoch":1,
|
"check_val_every_n_epoch":1,
|
||||||
"gradient_clip_val":1.0,
|
"gradient_clip_val":1.0,
|
||||||
"num_training_samples_per_epoch": 800,
|
"num_training_samples_per_epoch": 800,
|
||||||
@ -339,7 +339,7 @@ class PushToHubCallback(Callback):
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
login(os.environ.get("HUG_TOKKEN", ""))
|
login(os.environ.get("HUG_TOKKEN", None), True)
|
||||||
|
|
||||||
|
|
||||||
# ### Wandb.ai link: https://wandb.ai/michalkozlowski936/Donut?workspace=user-michalkozlowski936
|
# ### Wandb.ai link: https://wandb.ai/michalkozlowski936/Donut?workspace=user-michalkozlowski936
|
||||||
|
Loading…
Reference in New Issue
Block a user